北斗反射信號海風海浪反演系統(tǒng)與試驗
doi: 10.11999/JEIT180397
-
1.
北京航空航天大學電子信息工程學院 ??北京 ??100083
-
2.
勝利油田安全環(huán)保督查中心 ??東營 ??257000
BeiDou-reflectometry Sea Wind and Wave Retrieval System and Experiment
-
1.
School of Electronic and Information Engineering, Beihang University, Beijing 100083, China
-
2.
Safety and Environmental Supervision Center, Shengli Oil Field, Dongying 257000, China
-
摘要:
該文設計并實現(xiàn)了一種小型低功耗的北斗反射信號海風海浪反演系統(tǒng),針對反演精度受衛(wèi)星高度角影響較大的問題,提出高度角正弦值冪指數(shù)修正方法,且為降低風速突變對風速反演的影響,對風速反演模型進行了延時修正,有效提高了有效波高和風速的反演精度。為了進一步提高反演精度,提出多星聯(lián)合觀測和單邊濾波的方法。北斗反射信號海風海浪探測試驗結果表明:設計和實現(xiàn)的反演系統(tǒng)具備長期穩(wěn)定運行和觀測的性能;提出的反演模型和精度提升方法可以有效提高反演精度,有效波高和風速反演精度分別可達0.14 m和1.28 m/s,相比于Soulat等人提出的反演模型,分別提高了0.13 m和0.78 m/s。
Abstract:A low power and cost BeiDou-reflectometry used to retrieve Significiant Wave Height (SWH) and wind is designed and implemented. To improve the retrieval accuracy, a correction method based on the power function of the elevation angle sinusoidal and a delay correlation for the rapid change of wind speed is proposed. Moreover, combined observation of multi-satellite signals and single-side filtering for the observable are performed to improve further the retrieval accuracy. The experiment results of observating SWH and wind speed using reflected BeiDou signals show that designed and developed system could implement long-term and stable observation; the retrieval accuracies of SWH and wind speed retrieved by propsoed retrieval models and improvement methods of the retreival accuracy are 0.13 m and 1.28 m/s which are 0.13 m and 0.78 m/s higher than the methods proposed by Soulat et al.
-
表 2 不同反演方法對比
反演模型 優(yōu)化算法 有效波高誤差
(m)風速誤差
(m/s)反比例模型 – 0.27 2.06 – 0.21 1.43 指數(shù)模型(對風速
延時修正)多星觀測 0.19 1.36 平滑濾波 0.16 1.30 多星&平滑 0.14 1.28 下載: 導出CSV
-
MARTIN-NEIRA M. A pasive reflectometry and interferometry system (PARIS) application to ocean altimetry[J]. ESA Journal, 1993, 17(4): 331–355. SOISUVARN S, JELENAK Z, SAID F, et al. The GNSS reflectometry response to the ocean surface winds and waves[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2016, 9(10): 4678–4699. doi: 10.1109/JSTARS.2016.2602703 XU Fei, SUN Xiechang, LIU Xinning, et al. The study on retrieval technique of significant wave height using airborne GNSS-R[C]. Conference of Spacecraft TT&C Technology in China, Singapore, 2016: 401–411. ZHU Yongchao, YU Kegen, ZOU Jingui, et al. Sea ice detection based on differential delay-doppler maps from UK TechDemoSat-1[J]. Sensors, 2017, 17(7): 1–18. doi: 10.3390/s17071614 王峰, 楊東凱. 星載GNSS-R輔助海洋鹽度探測方法[J]. 北京航空航天大學學報, 2018, 44(1): 108–116. doi: 10.13700/j.bh.1001-5965.2017.0018WANG Feng and YANG Dongkai. Sea surface salinity determination method assisted by spaceborne GNSS-R[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 108–116. doi: 10.13700/j.bh.1001-5965.2017.0018 DU Wenying, CHEN Nengcheng, and YAN Songhua. Online soil moisture retrieval and sharing using geospatial web-enabled BDS-R service[J]. Computers & Electronics in Agriculture, 2016, 121: 354–367. doi: 10.1016/j.asr.2016.11.028 GARRISON J L, KATZBERG S J, and HILL M I. Effect of sea roughness on bistatically scattered range coded signals from the Global Positioning System[J]. Geophysical Research Letters, 1998, 25(13): 2257–2260. doi: 10.1029/98GL51615 SOULAT F, CAPARRINI M, GERMAIN O, et al. Sea state monitoring using coastal GNSS‐R[J]. Geophysical Research Letters, 2004, 31(21): 133–147. doi: 10.1029/2004GL020680 ALONSO-ARROYO A, CAMPS A, PARK H, et al. Retrieval of significant wave height and mean sea surface level using the GNSS-R interference pattern technique: Results from a three-month field campaign[J]. IEEE Transactions on Geoscience & Remote Sensing, 2015, 53(6): 3198–3209. doi: 10.1109/TGRS.2014.2371540 WANG Feng, YANG Dongkai, LI Weiqiang, et al. A new retrieval method of significant wave height based on statistics of scattered BeiDou GEO signals[C]. Proceedings of the 28th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+2015), Tampa, America, 2015: 3953–3957. VALENCIA E, CAMPS A, MARCHAN-HERNANDEZ J F, et al. Experimental determination of the sea correlation time using GNSS-R coherent data[J]. IEEE Geoscience & Remote Sensing Letters, 2010, 7(4): 675–679. doi: 10.1109/LGRS.2010.2046135 LI Weiqiang, FABRA F, YANG Dongkai, et al. Initial results of typhoon wind speed observation using coastal GNSS-R of BeiDou GEO satellite[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2016, 9(10): 4720–4729. doi: 10.1109/JSTARS.2016.2523126 公緒艷, 張鳳元, 楊東凱, 等. 基于北斗衛(wèi)星反射信號的海面風速探測[J]. 現(xiàn)代電子技術, 2017, 40(5): 5–9. doi: 10.16652/j.issn.1004-373x.2017.05.002GONG Xuyan, ZHANG Fengyuan, YANG Dongkai, et al. Ocean surface wind speed detection based on reflected signal of Beidou satellite[J]. Modern Electronics Technique, 2017, 40(5): 5–9. doi: 10.16652/j.issn.1004-373x.2017.05.002 NOGUES-CORREIG O, GALI E C, CAMPDERROS J S, et al. A GPS-reflections receiver that computes doppler/delay maps in real time[J]. IEEE Transactions on Geoscience & Remote Sensing, 2006, 45(1): 156–174. doi: 10.1109/TGRS.2006.882257 LI Weiqiang, YANG Dongkai, ZHANG Bo, et al. Real-time processing of reflected GNSS signals for remote sensing: System and experiments[J]. The Journal of Navigation, 2011, 64(S1): 127–140. doi: 10.1017/S0373463311000403 Oceanpal Datasheet[OL]. http://www.starlab.es/products/oceanpal. 2003. 周蔭清. 隨機過程理論[M]. 第3版, 北京: 北京航空航天大學出版社, 2013: 64–65. WANG Xin, SUN Qiang, ZHANG Xunxie, et al. First China ocean reflection experiment using coastal GNSS-R[J]. Chinese Science Bulletin, 2008, 53(7): 1117–1120. -