基于提升Keystone變換的聲吶寬帶自適應波束形成方法
doi: 10.11999/JEIT180394
-
1.
南京電子技術研究所 ??南京 ??210039
-
2.
中國電子科技集團公司智能感知技術重點實驗室 ??南京 ??210039
Sonar Broadband Adaptive Beamforming Based on Enhanced Keystone Transform
-
1.
Nanjing Research Institute of Electronics Technology, Nanjing 210039, China
-
2.
Key Laboratory of IntelliSense Technology, CETC, Nanjing 210039, China
-
摘要:
針對Keystone變換在寬帶陣列預處理方面的優(yōu)勢和常規(guī)Keystone變換存在的陣元數(shù)據(jù)缺失問題,該文將自回歸模型與常規(guī)Keystone變換相結合,提出一種基于提升Keystone變換的聲吶寬帶自適應波束形成算法。該算法首先將常規(guī)Keystone變換應用于寬帶陣列信號的相位對齊,接著采用自回歸模型對變換后各頻段缺失的陣元數(shù)據(jù)進行預測補償,最后通過穩(wěn)健自適應波束形成處理獲得目標方位輸出結果。仿真實驗結果表明,基于提升Keystone變換的寬帶自適應波束形成算法性能優(yōu)于常規(guī)Keystone自適應算法、指向最小方差自適應算法和聚焦自適應算法。
-
關鍵詞:
- 寬帶自適應波束形成 /
- Keystone變換 /
- 自回歸模型
Abstract:Keystone transform is an effective broadband array signal pre-processing method, but it has a main problem of array data missing. In order to solve this problem, an enhanced Keystone transform algorithm, which combines the autoregression model with traditional Keystone transform, is proposed in this paper for sonar broadband adaptive beamforming. After phase alignment of broadband array signal using traditional Keystone transform, autoregression models for each frequency are constructed to compensate the missing array data. Then, a robust adaptive beamforming approach is utilized to obtain the target bearing results. The results of simulation studies indicate that the proposed broadband adaptive beamforming algorithm based on enhanced Keystone transform outperforms the beamforming algorithms based on traditional Keystone transform, steered minimum variance and frequency focusing.
-
Key words:
- Broadband adaptive beamforming /
- Keystone transform /
- Autoregression model
-
表 1 計算時間比較(s)
提升KS-RCB STMV-RCB 聚焦-RCB 64元,500 Hz帶寬 1.89 6.69 1.53 64元,750 Hz帶寬 2.27 8.86 1.93 128元,500 Hz帶寬 4.60 15.73 4.82 256元,500 Hz帶寬 15.39 61.41 22.17 下載: 導出CSV
-
王永良,丁前軍,李榮鋒. 自適應陣列處理[M]. 北京: 清華大學出版社, 2015: 1–8.WANG Yongliang, DING Qianjun, and LI Rongfeng. Adaptive Array Processing[M]. Beijing: Tsinghua University Press, 2015: 1–8. 錢宇寧, 曹欣榮, 陳亞偉, 等. 被動聲吶盲分離自適應-自適應波束形成算法研究[J]. 電子與信息學報, 2017, 39(10): 2390–2396. doi: 10.11999/JEIT170099QIAN Yuning, CAO Xinrong, CHEN Yawei, et al. Research on adaptive-adaptive beamforming algorithm based on blind separation for passive sonar[J]. Journal of Electronics &Information Technology, 2017, 39(10): 2390–2396. doi: 10.11999/JEIT170099 YAN Chao, ZHANG Weiyu, XU Peng, et al. An improved robust adaptive beamforming based on worst-case performance optimization[J]. The Journal of the Acoustical Society of America, 2017, 142(4): 2729–2731. doi: 10.1121/1.5014963 LIU Wei and LANGLEY R J. An adaptive wideband beamforming structure with combined subband decomposition[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(7): 2204–2207. doi: 10.1109/TAP.2009.2021978 BUCRIS Y, COHEN I, and DORON M A. Bayesian focusing for coherent wideband beamforming[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(4): 1282–1296. doi: 10.1109/TASL.2011.2175384 SOMASUNDARAM S D. Wideband robust capon beamforming for passive sonar[J]. IEEE Journal of Oceanic Engineering, 2013, 38(2): 308–322. doi: 10.1109/JOE.2012.2223560 LI Dong, ZHAN Muyang, LIU Hongqing, et al. A robust translational motion compensation method for ISAR imaging based on keystone transform and fractional fourier transform under low SNR environment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(5): 2140–2156. doi: 10.1109/TAES.2017.2683599 HUANG Penghui, XIA Xianggen, LIAO Guisheng, et al. Ground moving target imaging based on Keystone transform and coherently integrated CPF with a single-channel SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 2017, 10(12): 5686–5694. doi: 10.1109/JSTARS.2017.2742580 章建成, 蘇濤, 呂倩. 基于運動參數(shù)非搜索高速機動目標檢測[J]. 電子與信息學報, 2016, 38(6): 1460–1467. doi: 10.11999/JEIT151042ZHANG Jiancheng, SU Tao, and Lü Qian. High-speed maneuvering target detection based on non-searching estimation of motion parameters[J]. Journal of Electronics &Information Technology, 2016, 38(6): 1460–1467. doi: 10.11999/JEIT151042 SUN Zhi, LI Xiaolong, YI Wei, et al. Detection of weak maneuvering target based on Keystone transform and matched filtering process[J]. Signal Processing, 2017, 140: 127–138. doi: 10.1016/j.sigpro.2017.05.013 張寧, 湯小為, 湯俊. 基于Keystone 變換預處理的寬帶波束形成方法[J]. 清華大學學報(自然科學版), 2013, 53(7): 991–994. doi: 10.16511/j.cnki.qhdxxb.2013.07.017ZHANG Ning, TANG Xiaowei, and TANG Jun. Broadband beamforming method based on Keystone transform pre-processing[J]. Journal of Tsinghua University(Science and Technology) , 2013, 53(7): 991–994. doi: 10.16511/j.cnki.qhdxxb.2013.07.017 ZHAO Yongbo, WANG Juan, HUANG Lei, et al. Low complexity Keystone transform without interpolation for dim moving target detection[C]. Proceedings of IEEE CIE International Conference on Radar, Chengdu, China, 2011: 1745–1748. MARANDA B. Efficient digital beamforming in the frequency domain[J]. Journal of the Acoustical Society of America, 1989, 86(5): 1813–1819. doi: 10.1121/1.398614 QIAN Yuning, YAN Ruqiang, and HU Shijie. Bearing degradation evaluation using recurrence quantification analysis and Kalman filter[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(11): 2599–2610. doi: 10.1109/TIM.2014.2313034 張玲華, 鄭寶玉. 隨機信號處理[M]. 北京: 清華大學出版社, 2008: 97–101.ZHANG Linghua and ZHENG Baoyu. Stochastic Signal Processing[M]. Beijing: Tsinghua University Press, 2008: 97–101. GOTO S, NAKAMURA M, and UOSAKI K. Online spectral estimation of nonstationary time-series based on AR model parameter-estimation and order selection with a forgetting factor[J]. IEEE Transactions on Signal Processing, 1995, 43(6): 1519–1522. doi: 10.1109/78.388868 -