一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

適用于二維陣列的無(wú)格稀疏波達(dá)方向估計(jì)算法

王劍書 樊養(yǎng)余 杜瑞 呂國(guó)云

王劍書, 樊養(yǎng)余, 杜瑞, 呂國(guó)云. 適用于二維陣列的無(wú)格稀疏波達(dá)方向估計(jì)算法[J]. 電子與信息學(xué)報(bào), 2019, 41(2): 447-454. doi: 10.11999/JEIT180340
引用本文: 王劍書, 樊養(yǎng)余, 杜瑞, 呂國(guó)云. 適用于二維陣列的無(wú)格稀疏波達(dá)方向估計(jì)算法[J]. 電子與信息學(xué)報(bào), 2019, 41(2): 447-454. doi: 10.11999/JEIT180340
Jianshu WANG, Yangyu FAN, Rui DU, Guoyun Lü. Gridless Sparse Method for Direction of Arrival Estimation for Two-dimensional Array[J]. Journal of Electronics & Information Technology, 2019, 41(2): 447-454. doi: 10.11999/JEIT180340
Citation: Jianshu WANG, Yangyu FAN, Rui DU, Guoyun Lü. Gridless Sparse Method for Direction of Arrival Estimation for Two-dimensional Array[J]. Journal of Electronics & Information Technology, 2019, 41(2): 447-454. doi: 10.11999/JEIT180340

適用于二維陣列的無(wú)格稀疏波達(dá)方向估計(jì)算法

doi: 10.11999/JEIT180340
基金項(xiàng)目: 水聲對(duì)抗重點(diǎn)實(shí)驗(yàn)室基金(kmb5494)
詳細(xì)信息
    作者簡(jiǎn)介:

    王劍書:男,1989年生,博士生,研究方向?yàn)殛嚵行盘?hào)處理、DOA估計(jì)和波束形成等

    樊養(yǎng)余:男,1960年生,教授,主要研究方向?yàn)閿?shù)字圖像處理、數(shù)字信號(hào)處理理論與應(yīng)用、無(wú)線光通信技術(shù)和虛擬現(xiàn)實(shí)技術(shù)等

    杜瑞:男,1988年生,博士生,研究方向?yàn)槔走_(dá)信號(hào)處理和模式識(shí)別等

    呂國(guó)云:男,1975年生,副教授,主要研究方向?yàn)樾盘?hào)與信息處理、語(yǔ)音和圖像處理、虛擬現(xiàn)實(shí)和嵌入式系統(tǒng)和高速信號(hào)處理等

    通訊作者:

    王劍書 wangjs123@mail.nwpu.edu.cn

  • 中圖分類號(hào): TN911.7

Gridless Sparse Method for Direction of Arrival Estimation for Two-dimensional Array

Funds: The Foundation of Key Laboratory of Underwater Acoustic Countermeasure (kmb5494)
  • 摘要:

    針對(duì)現(xiàn)有的適用于2維陣列的無(wú)格稀疏波達(dá)方向(DOA)估計(jì)方法性能不足的問(wèn)題,該文提出一種新的方法。對(duì)2維陣列,從原子L0范數(shù)出發(fā),證明其值等于一個(gè)以矩陣秩為目標(biāo)函數(shù)的半定規(guī)劃(SDP)問(wèn)題的最優(yōu)解。對(duì)該矩陣使用第1類有限階貝塞爾函數(shù)近似表達(dá),構(gòu)造新的秩優(yōu)化SDP問(wèn)題。根據(jù)低秩矩陣恢復(fù)理論,對(duì)該SDP問(wèn)題的目標(biāo)函數(shù)使用log-det函數(shù)方法平滑替代,然后使用優(yōu)化最小(MM)算法求解,最后通過(guò)(半)正定Toeplitz矩陣的范德蒙分解方法實(shí)現(xiàn)無(wú)格DOA估計(jì)。在MM算法求解模型時(shí),使用樣本協(xié)方差矩陣構(gòu)造初始優(yōu)化問(wèn)題,減少算法迭代。仿真實(shí)驗(yàn)結(jié)果表明,相較于基于網(wǎng)格的MUSIC和其他無(wú)格DOA估計(jì)方法,該文方法具有更好的均方根誤差(RMSE)性能與對(duì)相鄰源的分辨能力;在快拍數(shù)充足且信噪比(SNR)較高時(shí),適當(dāng)?shù)牡?類貝塞爾函數(shù)階數(shù)選擇可以實(shí)現(xiàn)與較大階數(shù)接近的RMSE性能,同時(shí)能減少運(yùn)行時(shí)間。

  • 圖  1  RMSE仿真實(shí)驗(yàn)結(jié)果

    圖  2  相鄰源RMSE仿真實(shí)驗(yàn)結(jié)果

    圖  3  不同貝塞爾函數(shù)階數(shù)的本文方法仿真實(shí)驗(yàn)結(jié)果

    表  1  不同貝塞爾函數(shù)階數(shù)的本文方法平均運(yùn)行時(shí)間(s)

    N20406080
    運(yùn)行時(shí)間0.74531.75364.03658.0497
    下載: 導(dǎo)出CSV
  • QIN Si, ZHANG Yimin D, and AMIN M G. DOA estimation of mixed coherent and uncorrelated targets exploiting coprime MIMO radar[J]. Digital Signal Processing, 2017, 61: 26–34. doi: 10.1016/j.dsp.2016.06.006
    SAUCAN A A, CHONAVEL T, SINTES C, et al. CPHD-DOA tracking of multiple extended sonar targets in impulsive environments[J]. IEEE Transactions on Signal Processing, 2016, 64(5): 1147–1160. doi: 10.1109/TSP.2015.2504349
    HE Saijuan and CHEN Huawei. Closed-form DOA estimation using first-order differential microphone arrays via joint temporal-spectral-spatial processing[J]. IEEE Sensors Journal, 2017, 17(4): 1046–1060. doi: 10.1109/JSEN.2016.2641449
    WAN Liangtian, HAN Guangjie, JIANG Jinfang, et al. A DOA estimation approach for transmission performance guarantee in D2D communication[J]. Mobile Networks and Applications, 2017, 22(6): 998–1009. doi: 10.1007/s11036-017-0820-2
    CAPON J. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of the IEEE, 1969, 57(8): 1408–1418. doi: 10.1109/PROC.1969.7278
    SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.1143830
    ROY R and KAILATH T. ESPRIT—Estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984–995. doi: 10.1109/29.32276
    MALIOUTOV D, CETIN M, and WILLSKY A S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 3010–3022. doi: 10.1109/TSP.2005.850882
    WIPF D P and RAO B D. An empirical Bayesian strategy for solving the simultaneous sparse approximation problem[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3704–3716. doi: 10.1109/TSP.2007.894265
    LIU Zhangmeng, HUANG Zhitao, and ZHOU Yiyu. An efficient maximum likelihood method for direction-of-arrival estimation via sparse Bayesian learning[J]. IEEE Transactions on Wireless Communications, 2012, 11(10): 1–11. doi: 10.1109/TWC.2012.090312.111912
    BHASKAR B N, TANG Gongguo, and RECHT B. Atomic norm denoising with applications to line spectral estimation[J]. IEEE Transactions on Signal Processing, 2013, 61(23): 5987–5999. doi: 10.1109/TSP.2013.2273443
    QIAN Tong, TIAN Jing, ZHANG Xu, et al. Atomic norm method for DOA estimation in random sampling condition[C]. 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 2016: 1–4.
    ZHANG Yu, ZHANG Gong, and WANG Xinhai. Array covariance matrix-based atomic norm minimization for off-grid coherent direction-of-arrival estimation[C]. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, USA, 2017: 3196–3200. doi: 10.1109/ICASSP.2017.7952746.
    CHEN Yuxin and CHI Yuejie. Robust spectral compressed sensing via structured matrix completion[J]. IEEE Transactions on Information Theory, 2014, 60(10): 6576–6601. doi: 10.1109/TIT.2014.2343623
    YANG Zai, LI Jian, STOICA P, et al. Sparse methods for direction-of-arrival estimation[OL]. http://cn.arxiv.org/pdf/1609.09596v2, 2017.3.
    YANG Zai, XIE Lihua, and ZHANG Cishen. A discretization-free sparse and parametric approach for linear array signal processing[J]. IEEE Transactions on Signal Processing, 2014, 62(19): 4959–4973. doi: 10.1109/TSP.2014.2339792
    YANG Zai and XIE Lihua. On gridless sparse methods for multi-snapshot direction of arrival estimation[J]. Circuits, Systems, and Signal Processing, 2017, 36(8): 3370–3384. doi: 10.1007/s00034-016-0462-9
    ZHANG Youwen, HONG Xiaoping, WANG Yonggang, et al. Gridless SPICE applied to parameter estimation of underwater acoustic frequency hopping signals[C]. 2016 IEEE/OES Chian Ocean Acoustics (COA), Harbin, China, 2016: 1–6.
    MAHATA K and HYDER M M. Grid-less TV minimization for DOA estimation[J]. Signal Processing, 2017, 132: 155–164. doi: 10.1016/j.sigpro.2016.09.018
    RAO B D and HARI K V S. Performance analysis of root-MUSIC[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(12): 1939–1949. doi: 10.1109/29.45540
    TANG Gongguo, BHASKAR B N, SHAH P, et al. Compressed sensing off the grid[J]. IEEE Transactions on Information Theory, 2013, 59(11): 7465–7490. doi: 10.1109/TIT.2013.2277451
    MOHAN K and FAZEL M. Iterative reweighted algorithms for matrix rank minimization[J]. Journal of Machine Learning Research, 2012, 13(11): 3441–3473.
    SUNDIN M, ROJAS C R, JANSSON M, et al. Relevance singular vector machine for low-rank matrix reconstruction[J]. IEEE Transactions on Signal Processing, 2016, 64(20): 5327–5339. doi: 10.1109/TSP.2016.2597121
    SUN Ying, BABU P, and PALOMAR D P. Majorization-minimization algorithms in signal processing, communications, and machine learning[J]. IEEE Transactions on Signal Processing, 2017, 65(3): 794–816. doi: 10.1109/TSP.2016.2601299
    HORN R A and JOHNSON C R. Matrix Analysis[M]. Cambridge: Cambridge University Press, 2013: 495–497.
    LANDAU H J. The classical moment problem: Hilbertian proofs[J]. Journal of Functional Analysis, 1980, 38(2): 255–272. doi: 10.1016/0022-1236(80)90065-8
    STOICA P and MOSES R L. Spectral Analysis of Signals[M]. Upper Saddle River, NJ: Pearson Prentice Hall, 2005: 172–177.
    YANG Zai and XIE Lihua. Enhancing sparsity and resolution via reweighted atomic norm minimization[J]. IEEE Transactions on Signal Processing, 2016, 64(4): 995–1006. doi: 10.1109/TSP.2015.2493987
    FERNANDEZGRANDA C. Super-resolution of point sources via convex programming[C]. IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Cancun, Mexico, 2015: 41–44.
    CANDES E J and FERNANDEZ-GRANDA C. Towards a mathematical theory of super-resolution[J]. Communications on Pure and Applied Mathematics, 2014, 67(6): 906–956. doi: 10.1002/cpa.v67.6
    STURM J F. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones[J]. Optimization Methods and Software, 1999, 11(1/4): 625–653. doi: 10.1080/10556789908805766
    TOH K C, TODD M J, and TUTUNCU R H. SDPT3—A Matlab software package for semidefinite programming, Version 1.3[J]. Optimization Methods and Software, 1999, 11(1/4): 545–581. doi: 10.1080/10556789908805762
    STURM J F. Implementation of interior point methods for mixed semidefinite and second order cone optimization problems[J]. Optimization Methods and Software, 2002, 17(6): 1105–1154. doi: 10.1080/1055678021000045123
    STOICA P and NEHORAI A. Performance study of conditional and unconditional direction-of-arrival estimation[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990, 38(10): 1783–1795. doi: 10.1109/29.60109
  • 加載中
圖(3) / 表(1)
計(jì)量
  • 文章訪問(wèn)數(shù):  1662
  • HTML全文瀏覽量:  1531
  • PDF下載量:  90
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-04-12
  • 修回日期:  2018-09-04
  • 網(wǎng)絡(luò)出版日期:  2018-09-12
  • 刊出日期:  2019-02-01

目錄

    /

    返回文章
    返回