一種基于等距度量學習策略的行人重識別改進算法
doi: 10.11999/JEIT180336
-
華南理工大學電子與信息學院 ??廣州 ??510000
Improved Metric Learning Algorithm for Person Re-identification Based on Equidistance
-
School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510000, China
-
摘要:
為了提高行人重識別距離度量MLAPG算法的魯棒性,該文提出基于等距度量學習策略的行人重識別Equid-MLAPG算法。 MLAPG算法中正負樣本對在映射空間的分布不均衡導致間距超參數(shù)受負樣本對距離影響更大,因此該文設(shè)計的Equid-MLAPG算法要求正樣本對映射成為變換空間中的一個點,即正樣本對在變換空間中距離為零,使算法收斂時正負樣本對距離分布不存在交叉部分。實驗表明Equid-MLAPG算法能在常用的行人重識別數(shù)據(jù)集上取得良好的實驗效果,具有更好的識別率和廣泛的適用性。
Abstract:In order to improve the robustness of MLAPG algorithm, a person re-identification algorithm, called Equid-MLAPG algorithm is proposed, which is based on the equidistance measurement learning strategy. Due to the imbalanced distribution of positive and negative sample pairs in the mapping space, sample spacing hyper-parameter of MLAPG algorithm is more affected by the distance of negative sample pairs. Therefore, Equid-MLAPG algorithm tends to map the positive sample pair to be a point in the transform space. That is, the distance of a positive sample pair in the transform space is mapped to be zero, resulting in no intersection in the distribution of positive and negative sample pairs in the transform space when algorithm convergences. Experiments show that the Equid-MLAPG algorithm can achieve better experimental results on commonly used person re-identification datasets with better recognition rate and wide applicability.
-
Key words:
- Person re-identification /
- Equidistance /
- MLAPG algorithm
-
表 1 CUHK03數(shù)據(jù)集上多種距離度量算法對比
算法 檢測標注 人工標注 第1匹配率(%) 第5匹配率(%) 第10匹配率(%) 第1匹配率(%) 第5匹配率(%) 第10匹配率(%) XQDA 46.25 78.90 88.55 52.20 82.23 92.14 MLAPG 51.15 83.55 92.05 57.96 87.09 94.74 Nullspace 53.70 83.05 90.30 58.90 85.60 92.45 Equid-MLAPG 52.41 85.25 92.84 58.72 89.07 95.28 下載: 導出CSV
表 2 Marlet1501,DukeMTMC-reID數(shù)據(jù)集上多種距離度量算法對比
算法 Market1501數(shù)據(jù)集 DukeMTMC-reID數(shù)據(jù)集 第1匹配率(%) 平均準確率(%) 第1匹配率(%) 平均準確率(%) XQDA 43.23 22.00 31.37 17.17 MLAPG 42.52 21.45 36.58 19.10 Nullspace 54.60 29.80 45.02 26.11 Equid-MLAPG 44.25 24.38 39.25 21.54 下載: 導出CSV
-
ZHENG Liang, YANG Yi, and HAUPTMANN A G. Person re-identification: Past, present and future[OL]. arXiv preprint arXiv: 1610.02984, 2016. SHAH J H, LIN Mingqiang, and CHEN Zonghai. Multi-camera handoff for person re-identification[J]. Neurocomputing, 2016, 191: 238–248. doi: 10.1016/j.neucom.2016.01.037 REHMAN S U, CHEN Zonghai, RAZA M, et al. Person re-identification post-rank optimization via hypergraph-based learning[J]. Neurocomputing, 2018, 287: 143–153. doi: 10.1016/j.neucom.2018.01.086 PEDAGADI S, ORWELL J, VELASTIN S, et al. Local fisher discriminant analysis for pedestrian re-identification[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Protland, USA, 2013: 3318–3325. WEINBERGER K Q, BLITZER J, and SAUL L K. Distance metric learning for large margin nearest neighbor classification[C]. Advances in Neural Information Processing Systems. Vancouver, Canada, 2006: 1473–1480. DAVIS J V, KULIS B, JAIN P, et al. Information-theoretic metric learning[C]. Proceedings of the 24th International Conference on Machine Learning, Corvalis, USA, 2007: 209–216. DIKMEN M, AKBAS E, HUANG T S, et al. Pedestrian recognition with a learned metric[C]. Asian Conference on Computer Vision, Queenstown, New Zealand, 2010: 501–512. ZHENG Weishi, GONG Shaogang, and XIANG Tao. Person re-identification by probabilistic relative distance comparison[C]. Computer Vision and Pattern Recognition, IEEE, Colorado, USA, 2011: 649–656. KOESTINGER M, HIRZER M, WOHLHART P, et al. Large scale metric learning from equivalence constraints[C]. Computer Vision and Pattern Recognition (CVPR), Rhode Island, USA, 2012: 2288–2295. TAO Dapeng, JIN Lianwen, WANG Yongfei, et al. Person re-identification by regularized smoothing kiss metric learning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(10): 1675–1685. doi: 10.1109/tcsvt.2013.2255413 LIAO Shengcai, and LI S Z. Efficient PSD constrained asymmetric metric learning for person re-identification[C]. Proceedings of the IEEE International Conference on Computer Vision. Santiago, USA, 2015: 3685–3693. NESTEROV Y. Introductory Lectures on Convex Optimization: A Basic Course[M]. New York, USA, Springer Science & Business Media, 2013: 15–20. TSENG P. On accelerated proximal gradient methods for convex-concave optimization[OL]. http://www.mit.edu/~dimitrib/PTseng/papers/apgm.pdf. GRAY D and TAO Hai. Viewpoint invariant pedestrian recognition with an ensemble of localized features[C]. European Conference on Computer Vision, Marseille, France, 2008: 262–275. LI Wei, ZHAO Rui, and WANG Xiaogang. Human reidentification with transferred metric learning[C]. Asian Conference on Computer Vision. Daejeon, Korea, 2012: 31–44. LI Wei, ZHAO Rui, XIAO Tong, et al. Deepreid: Deep filter pairing neural network for person re-identification[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014: 152–159. ZHENG Liang, SHEN Liyue, TIAN Lu, et al. Scalable person re-identification: A benchmark[C]. Proceedings of the IEEE International Conference on Computer Vision. Santiago, USA, 2015: 1116–1124. ZHENG Zhedong, ZHENG Liang, and YANG Yi. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro[C]. IEEE International Conference on Computer Vision. Venice, Italy, 2017: 3774–3782. LIAO Shengcai, HU Yang, ZHU Xiangyu, et al. Person re-identification by local maximal occurrence representation and metric learning[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 2197–2206. ZHANG Li, XIANG Tao, and GONG Shaogong. Learning a discriminative null space for person re-identification[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1239–1248. 曾明勇, 吳澤明, 田暢, 等. 基于外觀統(tǒng)計特征融合的人體目標再識別[J]. 電子與信息學報, 2014, 36(8): 1844–1851. doi: 10.3724/SP.J.1146.2013.01389ZENG Mingyong, WU Zeming, TIAN Chang, et al. Fusing appearance statistical features for person re-identification[J]. Journal of Electronics &Information Technology, 2014, 36(8): 1844–1851. doi: 10.3724/SP.J.1146.2013.01389 MATSUKAWA T, OKABE T, SUZUKI E, et al. Hierarchical gaussian descriptor for person re-identification[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 1363–1372. -