一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

一種基于等距度量學習策略的行人重識別改進算法

周智恒 劉楷怡 黃俊楚 陳增群

周智恒, 劉楷怡, 黃俊楚, 陳增群. 一種基于等距度量學習策略的行人重識別改進算法[J]. 電子與信息學報, 2019, 41(2): 477-483. doi: 10.11999/JEIT180336
引用本文: 周智恒, 劉楷怡, 黃俊楚, 陳增群. 一種基于等距度量學習策略的行人重識別改進算法[J]. 電子與信息學報, 2019, 41(2): 477-483. doi: 10.11999/JEIT180336
Zhiheng ZHOU, Kaiyi LIU, Junchu HUANG, Zengqun CHEN. Improved Metric Learning Algorithm for Person Re-identification Based on Equidistance[J]. Journal of Electronics & Information Technology, 2019, 41(2): 477-483. doi: 10.11999/JEIT180336
Citation: Zhiheng ZHOU, Kaiyi LIU, Junchu HUANG, Zengqun CHEN. Improved Metric Learning Algorithm for Person Re-identification Based on Equidistance[J]. Journal of Electronics & Information Technology, 2019, 41(2): 477-483. doi: 10.11999/JEIT180336

一種基于等距度量學習策略的行人重識別改進算法

doi: 10.11999/JEIT180336
基金項目: 國家自然科學基金(U1401252, 61871188),國家重點研發(fā)計劃(2018YFC0309400),中央高?;究蒲袠I(yè)務(wù)費專項資金(2017MS062),廣州市產(chǎn)學研協(xié)同創(chuàng)新重大專項(201604016133)
詳細信息
    作者簡介:

    周智恒:男,1977年生,教授,博士生導師,研究方向為模式識別與人工智能

    劉楷怡:女,1994年生,碩士生,研究方向為圖像處理與模式識別

    黃俊楚:男,1994年生,博士生,研究方向為圖像處理與模式識別

    陳增群:男,1995年生,本科生,研究方向為圖像處理與模式識別

    通訊作者:

    周智恒 zhouzh@scut.edu.cn

  • 中圖分類號: TP391.41

Improved Metric Learning Algorithm for Person Re-identification Based on Equidistance

Funds: The National Natural Science Foundation of China (U1401252,61871188), The National Key R&D Program of China (2018YFC0309400), The Fundamental Research Funds for the Central Universities SCUT (2017MS062), Guangzhou City Science and Technology Research Projects (201604016133)
  • 摘要:

    為了提高行人重識別距離度量MLAPG算法的魯棒性,該文提出基于等距度量學習策略的行人重識別Equid-MLAPG算法。 MLAPG算法中正負樣本對在映射空間的分布不均衡導致間距超參數(shù)受負樣本對距離影響更大,因此該文設(shè)計的Equid-MLAPG算法要求正樣本對映射成為變換空間中的一個點,即正樣本對在變換空間中距離為零,使算法收斂時正負樣本對距離分布不存在交叉部分。實驗表明Equid-MLAPG算法能在常用的行人重識別數(shù)據(jù)集上取得良好的實驗效果,具有更好的識別率和廣泛的適用性。

  • 圖  1  MLAPG算法中$\mu $取值和訓練過程中所有樣本對馬氏距離均值對比示意圖

    圖  2  對數(shù)邏輯損失函數(shù)變化趨勢

    圖  3  在不同限制條件下正負樣本對距離情況

    圖  4  正負樣本分布區(qū)域重疊示意圖

    圖  5  交換空間中樣本分類情況

    圖  6  VIPeR數(shù)據(jù)集上Equid-MLAPG算法與其他距離度量算法CMC曲線圖

    圖  7  CUHK01數(shù)據(jù)集上Equid-MLAPG算法與其他距離度量算法CMC曲線圖

    表  1  CUHK03數(shù)據(jù)集上多種距離度量算法對比

    算法檢測標注 人工標注
    第1匹配率(%)第5匹配率(%)第10匹配率(%)第1匹配率(%)第5匹配率(%)第10匹配率(%)
    XQDA46.2578.9088.55 52.2082.2392.14
    MLAPG51.1583.5592.0557.9687.0994.74
    Nullspace53.7083.0590.3058.9085.6092.45
    Equid-MLAPG52.4185.2592.8458.7289.0795.28
    下載: 導出CSV

    表  2  Marlet1501,DukeMTMC-reID數(shù)據(jù)集上多種距離度量算法對比

    算法Market1501數(shù)據(jù)集 DukeMTMC-reID數(shù)據(jù)集
    第1匹配率(%)平均準確率(%)第1匹配率(%)平均準確率(%)
    XQDA43.2322.00 31.3717.17
    MLAPG42.5221.4536.5819.10
    Nullspace54.6029.8045.0226.11
    Equid-MLAPG44.2524.3839.2521.54
    下載: 導出CSV
  • ZHENG Liang, YANG Yi, and HAUPTMANN A G. Person re-identification: Past, present and future[OL]. arXiv preprint arXiv: 1610.02984, 2016.
    SHAH J H, LIN Mingqiang, and CHEN Zonghai. Multi-camera handoff for person re-identification[J]. Neurocomputing, 2016, 191: 238–248. doi: 10.1016/j.neucom.2016.01.037
    REHMAN S U, CHEN Zonghai, RAZA M, et al. Person re-identification post-rank optimization via hypergraph-based learning[J]. Neurocomputing, 2018, 287: 143–153. doi: 10.1016/j.neucom.2018.01.086
    PEDAGADI S, ORWELL J, VELASTIN S, et al. Local fisher discriminant analysis for pedestrian re-identification[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Protland, USA, 2013: 3318–3325.
    WEINBERGER K Q, BLITZER J, and SAUL L K. Distance metric learning for large margin nearest neighbor classification[C]. Advances in Neural Information Processing Systems. Vancouver, Canada, 2006: 1473–1480.
    DAVIS J V, KULIS B, JAIN P, et al. Information-theoretic metric learning[C]. Proceedings of the 24th International Conference on Machine Learning, Corvalis, USA, 2007: 209–216.
    DIKMEN M, AKBAS E, HUANG T S, et al. Pedestrian recognition with a learned metric[C]. Asian Conference on Computer Vision, Queenstown, New Zealand, 2010: 501–512.
    ZHENG Weishi, GONG Shaogang, and XIANG Tao. Person re-identification by probabilistic relative distance comparison[C]. Computer Vision and Pattern Recognition, IEEE, Colorado, USA, 2011: 649–656.
    KOESTINGER M, HIRZER M, WOHLHART P, et al. Large scale metric learning from equivalence constraints[C]. Computer Vision and Pattern Recognition (CVPR), Rhode Island, USA, 2012: 2288–2295.
    TAO Dapeng, JIN Lianwen, WANG Yongfei, et al. Person re-identification by regularized smoothing kiss metric learning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(10): 1675–1685. doi: 10.1109/tcsvt.2013.2255413
    LIAO Shengcai, and LI S Z. Efficient PSD constrained asymmetric metric learning for person re-identification[C]. Proceedings of the IEEE International Conference on Computer Vision. Santiago, USA, 2015: 3685–3693.
    NESTEROV Y. Introductory Lectures on Convex Optimization: A Basic Course[M]. New York, USA, Springer Science & Business Media, 2013: 15–20.
    TSENG P. On accelerated proximal gradient methods for convex-concave optimization[OL]. http://www.mit.edu/~dimitrib/PTseng/papers/apgm.pdf.
    GRAY D and TAO Hai. Viewpoint invariant pedestrian recognition with an ensemble of localized features[C]. European Conference on Computer Vision, Marseille, France, 2008: 262–275.
    LI Wei, ZHAO Rui, and WANG Xiaogang. Human reidentification with transferred metric learning[C]. Asian Conference on Computer Vision. Daejeon, Korea, 2012: 31–44.
    LI Wei, ZHAO Rui, XIAO Tong, et al. Deepreid: Deep filter pairing neural network for person re-identification[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014: 152–159.
    ZHENG Liang, SHEN Liyue, TIAN Lu, et al. Scalable person re-identification: A benchmark[C]. Proceedings of the IEEE International Conference on Computer Vision. Santiago, USA, 2015: 1116–1124.
    ZHENG Zhedong, ZHENG Liang, and YANG Yi. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro[C]. IEEE International Conference on Computer Vision. Venice, Italy, 2017: 3774–3782.
    LIAO Shengcai, HU Yang, ZHU Xiangyu, et al. Person re-identification by local maximal occurrence representation and metric learning[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 2197–2206.
    ZHANG Li, XIANG Tao, and GONG Shaogong. Learning a discriminative null space for person re-identification[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1239–1248.
    曾明勇, 吳澤明, 田暢, 等. 基于外觀統(tǒng)計特征融合的人體目標再識別[J]. 電子與信息學報, 2014, 36(8): 1844–1851. doi: 10.3724/SP.J.1146.2013.01389

    ZENG Mingyong, WU Zeming, TIAN Chang, et al. Fusing appearance statistical features for person re-identification[J]. Journal of Electronics &Information Technology, 2014, 36(8): 1844–1851. doi: 10.3724/SP.J.1146.2013.01389
    MATSUKAWA T, OKABE T, SUZUKI E, et al. Hierarchical gaussian descriptor for person re-identification[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 1363–1372.
  • 加載中
圖(7) / 表(2)
計量
  • 文章訪問數(shù):  2347
  • HTML全文瀏覽量:  599
  • PDF下載量:  93
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-04-11
  • 修回日期:  2018-09-13
  • 網(wǎng)絡(luò)出版日期:  2018-09-20
  • 刊出日期:  2019-02-01

目錄

    /

    返回文章
    返回