一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于采樣值隨機(jī)壓縮矩陣核空間的亞奈奎斯特采樣重構(gòu)算法

蓋建新 杜昊辰 劉琦 童子權(quán)

蓋建新, 杜昊辰, 劉琦, 童子權(quán). 基于采樣值隨機(jī)壓縮矩陣核空間的亞奈奎斯特采樣重構(gòu)算法[J]. 電子與信息學(xué)報(bào), 2019, 41(2): 484-491. doi: 10.11999/JEIT180323
引用本文: 蓋建新, 杜昊辰, 劉琦, 童子權(quán). 基于采樣值隨機(jī)壓縮矩陣核空間的亞奈奎斯特采樣重構(gòu)算法[J]. 電子與信息學(xué)報(bào), 2019, 41(2): 484-491. doi: 10.11999/JEIT180323
Jianxin GAI, Haochen DU, Qi LIU, Ziquan TONG. Sub-Nyquist Sampling Recovery Algorithm Based on Kernel Space of the Random-compression Sampling Value Matrix[J]. Journal of Electronics & Information Technology, 2019, 41(2): 484-491. doi: 10.11999/JEIT180323
Citation: Jianxin GAI, Haochen DU, Qi LIU, Ziquan TONG. Sub-Nyquist Sampling Recovery Algorithm Based on Kernel Space of the Random-compression Sampling Value Matrix[J]. Journal of Electronics & Information Technology, 2019, 41(2): 484-491. doi: 10.11999/JEIT180323

基于采樣值隨機(jī)壓縮矩陣核空間的亞奈奎斯特采樣重構(gòu)算法

doi: 10.11999/JEIT180323
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61501150),黑龍江省自然科學(xué)基金(QC2014C074)
詳細(xì)信息
    作者簡(jiǎn)介:

    蓋建新:男,1980年生,博士,副教授,研究方向?yàn)閴嚎s感知、亞奈奎斯特采樣理論、頻譜感知技術(shù)等

    杜昊辰:男,1991年生,碩士生,研究方向?yàn)殡娮优c通信工程

    劉琦:男,1994年生,碩士生,研究方向?yàn)閮x器儀表工程

    童子權(quán):男,1968年生,教授,研究方向?yàn)楝F(xiàn)代電子測(cè)量?jī)x器與系統(tǒng)、信號(hào)處理等

    通訊作者:

    蓋建新 gjx800608@126.com

  • 中圖分類號(hào): TP391

Sub-Nyquist Sampling Recovery Algorithm Based on Kernel Space of the Random-compression Sampling Value Matrix

Funds: The National Natural Science Foundation of China (61501150), The Natural Science Foundation of Heilongjiang Province (QC2014C074)
  • 摘要:

    針對(duì)現(xiàn)有調(diào)制寬帶轉(zhuǎn)換器亞奈奎斯特采樣重構(gòu)算法性能不高問題,該文提出一種基于采樣值核空間的支撐重構(gòu)算法和隨機(jī)壓縮降秩方法,將兩者結(jié)合得到一種高性能采樣重構(gòu)算法。首先利用隨機(jī)壓縮變換在不改變未知矩陣稀疏特性的前提下將采樣方程轉(zhuǎn)化為多個(gè)新的多測(cè)量向量問題,然后利用采樣值矩陣核空間與采樣矩陣支撐正交的關(guān)系獲取聯(lián)合稀疏支撐集,最后通過偽逆完成重構(gòu)。從理論和實(shí)驗(yàn)兩個(gè)方面對(duì)所提方法進(jìn)行了分析和驗(yàn)證。數(shù)值實(shí)驗(yàn)表明,與傳統(tǒng)重構(gòu)算法相比,所提算法提高了重構(gòu)成功率、降低了高概率重構(gòu)所需的通道數(shù),而且重構(gòu)性能總體上隨壓縮次數(shù)增加而提高。

  • 圖  1  稀疏寬帶信號(hào)頻譜示意圖

    圖  2  MWC系統(tǒng)框圖

    圖  3  MWC采樣方程示意圖

    圖  4  不同條件下采樣值矩陣的秩隨通道數(shù)的變化情況

    圖  5  不同條件下隨機(jī)壓縮后采樣值矩陣秩的統(tǒng)計(jì)結(jié)果

    圖  6  不同壓縮次數(shù)時(shí)RCKS重構(gòu)性能隨通道數(shù)的變化

    圖  7  RCKS重構(gòu)成功率隨壓縮次數(shù)的變化

    圖  8  不同信噪比時(shí)RCKS(r = 4)與CSMUSIC, SCoSaMP, OMPMMV重構(gòu)成功率比較

    圖  9  RCKS(r = 4)算法重構(gòu)效果

  • PARK J, JANG J, IM S, et al. A sub-nyquist radar electronic surveillance system[J]. IEEE Access, 2018, 6: 10080–10091. doi: 10.1109/ACCESS.2018.2799304
    QIN Zhijin, GAO Yue, PLUMBLEY M D, et al. Wideband spectrum sensing on real-time signals at sub-Nyquist sampling rates in single and cooperative multiple nodes[J]. IEEE Transactions on Signal Processing, 2016, 64(12): 3106–3117. doi: 10.1109/TSP.2015.2512562
    鄭仕鏈, 楊小牛. 用于調(diào)制寬帶轉(zhuǎn)換器壓縮頻譜感知的重構(gòu)失敗判定方法[J]. 電子與信息學(xué)報(bào), 2015, 37(1): 236–240. doi: 10.11999/JEIT140127

    ZHENG Shilian and YANG Xiaoniu. A reconstruction failure detection scheme for modulated wideband converter based compressed spectrum sensing[J]. Journal of Electronics &Information Technology, 2015, 37(1): 236–240. doi: 10.11999/JEIT140127
    DONOHO D L. Compressed sensing[J]. IEEE Transaction on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    BARANIUK R G. More is less: Signal processing and the data deluge[J]. Science, 2011, 331(6018): 717–719. doi: 10.1126/science.1197448
    LASKA J N, KIROLOS S, DUARTE M F, et al. Theory and implementation of an analog-to-information converter using random demodulation[C]. IEEE International Symposium on Circuits and Systems, New Orleans, USA, 2007: 1959–1962.
    FARDAD M, SAYEDI S M, and YAZDIAN E. Hardware implementation of iterative method with adaptive thresholding for random sampling recovery of sparse signals[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26(5): 867–877. doi: 10.1109/TVLSI.2018.2791351
    REN Shiyu, ZENG Zhimin, GUO Caili, et al. A low complexity sensing algorithm for wideband sparse spectra[J]. IEEE Communications Letters, 2017, 21(1): 92–95. doi: 10.1109/LCOMM.2016.2616471
    MISHALI M and ELDAR Y C. From theory to practice: Sub-Nyquist sampling of sparse wideband analog signals[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 375–391. doi: 10.1109/JSTSP.2010.2042414
    ADAMS D, ELDAR Y C, and MURMANN B. A mixer front end for a four channel modulated wideband converter with 62-dB blocker rejection[J]. IEEE Journal of Solid-State Circuits, 2017, 52(5): 1286–1294. doi: 10.1109/JSSC.2017.2647941
    LEXA M A, DAVIES M E, and THOMPSON J S. Reconciling compressive sampling systems for spectrally sparse continuous-time signals[J]. IEEE Transactions on Signal Processing, 2012, 60(1): 155–171. doi: 10.1109/TSP.2011.2169408
    ZHANG Ruoyu, ZHAO Honglin, JIA Shaobo, et al. Sparse multi-band signal recovery based on support refining for modulated wideband converter[C]. IEEE 13th International Conference on Signal Processing (ICSP), Chengdu, China, 2016: 304–309.
    COTTER F S, RAO D B, ENGAN K, et al. Sparse solutions to linear inverse problems with multiple measurement vectors[J]. IEEE Transactions on Signal Processing, 2005, 53(7): 2477–2488. doi: 10.1109/TSP.2005.849172
    CHEN Jie and HUO Xiaoming. Theoretical results on sparse representations of multiple-measurement vectors[J]. IEEE Transactions on Signal Processing, 2006, 54(12): 4634–4643. doi: 10.1109/TSP.2006.881263
    BLANCHARD J D, CERMAK M, HANLE D, et al. Greedy algorithms for joint sparse recovery[J]. IEEE Transactions on Signal Processing, 2014, 62(7): 1694–1704. doi: 10.1109/TSP.2014.2301980
    KIM J M, LEE O K, and YE J C. Compressive MUSIC: Revisiting the link between compressive sensing and array signal processing[J]. IEEE Transactions on Information Theory, 2012, 58(1): 278–301. doi: 10.1109/TIT.2011.2171529
    MISHALI M and ELDAR Y C. Reduce and boost: Recovering arbitrary sets of jointly sparse vectors[J]. IEEE Transactions on Signal Processing, 2008, 56(10): 4692–4702. doi: 10.1109/TSP.2008.927802
  • 加載中
圖(9)
計(jì)量
  • 文章訪問數(shù):  2166
  • HTML全文瀏覽量:  886
  • PDF下載量:  57
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-04-11
  • 修回日期:  2018-10-29
  • 網(wǎng)絡(luò)出版日期:  2018-11-08
  • 刊出日期:  2019-02-01

目錄

    /

    返回文章
    返回