帶有卸載時延感知的邊緣云增強FiWi網絡節(jié)能機制
doi: 10.11999/JEIT180274
-
1.
重慶郵電大學通信與信息工程學院 ??重慶 ??400065
-
2.
重慶高校市級光通信與網絡重點實驗室 ??重慶 ??400065
Energy Saving Mechanism with Offload Delay Aware in Cloudlet Enhanced Fi-Wi Access Network
-
1.
School of Telecommunication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
2.
Key Laboratory of Optical Communication and Network, Chongqing 400065, China
-
摘要:
邊緣云增強光無線融合網絡中,存在傳統(tǒng)節(jié)能機制與卸載業(yè)務不匹配的問題。該文提出一種帶有負載轉移的光網絡單元卸載協(xié)同休眠機制。通過分析當前光網絡單元負載,結合無線域多跳傳輸時延和目標光網絡單元的報告幀發(fā)送時刻,進而確定休眠和目的光網絡單元完成負載轉移。然后光網絡單元協(xié)同考慮邊緣服務器的回傳數據到達時刻和無線域控制幀的發(fā)送時刻,選取最合適的休眠時長以減少控制開銷。仿真結果表明,所提機制在有效降低網絡能耗的同時能保證卸載業(yè)務的時延性能。
-
關鍵詞:
- 光無線融合網絡 /
- 移動邊緣計算 /
- 節(jié)能 /
- 卸載協(xié)同休眠
Abstract:In cloudlet enhanced Fiber-Wireless (FiWi) access network, there is a problem that the traditional energy saving mechanism does not match the offload traffic. An offload collaboration sleep mechanism with load transfer is proposed. By analyzing the load of the optical network unit and combining the transmission delay of the multi-hop in the wireless domain and the sending time of the report frame of the target optical network unit, the proposed mechanism can determine the sleeping and the destination optical network unit to complete load transfer. Then, the optical network unit jointly considers the arrival time of the returned data of the edge severs and the sending time of the control frame in the wireless domain to select the optimal sleep duration and reduce the controlling overhead. Simulation results show that the proposed mechanism can effectively reduce the network energy consumption while ensuring the delay performance of offload traffic.
-
表 1 仿真參數設置
參數設定 參數數值 ONU數目N(個) 16 STA數目M(個) 50 ONU活躍狀態(tài)能耗(W) 5.052 ONU休眠狀態(tài)能耗(W) 0.750 STA活躍狀態(tài)能耗(W) 0.900 STA休眠狀態(tài)能耗(W) 0.300 平均卸載分組大小(kB) 163.6 ONU間保護時隙(μs) 46.000 STA間保護時隙(μs) 10.000 控制幀時隙(μs) 0.512 下載: 導出CSV
-
WU Dapeng, LIU Qianru, WANG Honggang, et al. Socially aware energy efficient mobile edge collaboration for video distribution[J]. IEEE Transaction on Multimedia, 2017, 19(10): 2197–2209. doi: 10.1109/TMM.2017.2733300HJK WU Dapeng, SI Shushan, WU Shaoen, et al. Dynamic trust relationships aware data privacy protection in mobile crowd-sensing[J]. IEEE Internet of Things Journal, 2017, 5(4): 2958–2970. doi: 10.1109/JIOT.2017.2768073 DAVY S, FAMAEY J, SERRAT F J, et al. Challenges to support edge-as-a-service[J]. IEEE Communications Magazine, 2014, 52(1): 132–139. doi: 10.1109/MCOM.2014.6710075 WU Dapeng, LIU Zuqi, WANG Ruyan, et al. Dynamic bandwidth allocation mechanism in EPON with idle time eliminated[J]. Optik-International Journal for Light and Electron Optics, 2013, 124(23): 6372–6376. doi: 10.1016/j.ijleo.2013.05.027 YU Yingpeng, LIU Yejun, ZHOU Yufang, et al. Planning of survivable cloud-integrated wireless-optical broadband access network against distribution fiber failure[J]. Optical Switching & Networking, 2014, 14(4): 217–225. doi: 10.1016/j.osn.2014.05.014 SARDELLITTI S, SCUTARI G, and BARBAROSSA S. Joint optimization of radio and computational resources for multicell mobile-edge computing[J]. IEEE Transactions on Signal & Information Processing Over Networks, 2015, 1(2): 89–103. doi: 10.1109/TSIPN.2015.2448520 RIMAL B P, VAN D P, and MAIER M. Mobile-edge computing versus centralized cloud computing over a converged FiWi access network[J]. IEEE Transactions on Network & Service Management, 2017, 14(3): 498–513. doi: 10.1109/TNSM.2017.2706085 YOU Changsheng, HUANG Kaibin, HYUKJIN C, et al. Energy-efficient resource allocation for mobile-edge computation offloading[J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 1397–1411. doi: 10.1109/TWC.2016.2633522 ZHANG Ke, MAO Yuming, and LENG Supeng. Energy-efficient offloading for mobile edge computing in 5G heterogeneous Networks[J]. IEEE Access, 2015, 4(68): 5896–5907. doi: 10.1109/ACCESS.2016.2597169 LIU Yejun, GUO Lei, ZHANG Lincong, et al. A new integrated energy-saving scheme in green Fiber-Wireless(FiWi) access network[J]. Science China, 2014, 57(6): 62307–06. doi: 10.1007/s11432-013-4958-7 張晚生, 劉凱. 無線網絡中基于位置的能量高效協(xié)作路由算法[J]. 電子與信息學報, 2012, 34(1): 63–68. doi: 10.3724/SP.J.1146.2011.00425ZHANG Wansheng and LIU Kai. Energy-efficient location-based cooperative routing in wireless networks[J]. Journal of Electronics &Information Technology, 2012, 34(1): 63–68. doi: 10.3724/SP.J.1146.2011.00425 RIMAL B P, VAN D P, and MAIER M. Mobile-edge computing vs. centralized cloud computing in fiber-wireless access networks[C]. IEEE Computer Communications Workshops, San Francisco, USA, 2016: 991–996. SARKAR S, YEN H H, DIXIT S, et al. A novel Delay-Aware Routing Algorithm (DARA) for a hybrid Wireless-Optical Broadband Access Network (WOBAN)[J]. Network IEEE, 2008, 22(3): 20–28. doi: 10.1109/MNET.2008.4519961 ZHAO Tianchu, ZHOU Sheng, GUO Xueying, et al. A cooperative scheduling scheme of local cloud and internet cloud for delay-aware mobile cloud computing[C]. IEEE Globecom Wkshps. San Diego, USA, 2015: 1–6. CHENG Dazhao, JIANG Changjun, and ZHOU Xiaobo. Heterogeneity-aware workload placement and migration in distributed sustainable datacenters[C]. IEEE International Parallel and Distributed Processing Symposium, Phoenix, USA, 2014: 307–316. NEWAZA S S H, CUEVASB A, LEE G M, et al. Adaptive delay-aware energy efficient TDM-PON[J]. Computer Networks, 2013, 57(7): 1577–1596. doi: 10.1016/j.comnet.2013.02.001 MIYANABE K, NISHIYAMA H, KATO N, et al. Synchronized power saving mechanisms for battery-powered mobile terminals in smart FiWi networks[C]. IEEE Vehicular Technology Conference, Vancouver, Canada, 2014: 1–5. -