基于代碼進(jìn)化的惡意代碼沙箱規(guī)避檢測技術(shù)研究
doi: 10.11999/JEIT180257
-
1.
解放軍信息工程大學(xué) ??鄭州 ??450001
-
2.
數(shù)學(xué)工程與先進(jìn)計(jì)算國家重點(diǎn)實(shí)驗(yàn)室 ??鄭州 ??450001
Malware Sandbox Evasion Detection Based on Code Evolution
-
1.
PLA Information Engineering University, Zhengzhou 450001, China
-
2.
State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450001, China
-
摘要:
為了對抗惡意代碼的沙箱規(guī)避行為,提高惡意代碼的分析效率,該文提出基于代碼進(jìn)化的惡意代碼沙箱規(guī)避檢測技術(shù)。提取惡意代碼的靜態(tài)語義信息和動(dòng)態(tài)運(yùn)行時(shí)信息,利用沙箱規(guī)避行為在代碼進(jìn)化過程中所產(chǎn)生的動(dòng)靜態(tài)語義上的差異,設(shè)計(jì)了基于相似度差異的判定算法。在7個(gè)實(shí)際惡意家族中共檢測出240個(gè)具有沙箱規(guī)避行為的惡意樣本,相比于JOE分析系統(tǒng),準(zhǔn)確率提高了12.5%,同時(shí)將誤報(bào)率降低到1%,其驗(yàn)證了該文方法的正確性和有效性。
-
關(guān)鍵詞:
- 惡意代碼 /
- 沙箱規(guī)避 /
- 靜態(tài)相似度
Abstract:In order to resist the malware sandbox evasion behavior, improve the efficiency of malware analysis, a code-evolution-based sandbox evasion technique for detecting the malware behavior is proposed. The approach can effectively accomplish the detection and identification of malware by first extracting the static and dynamic features of malware software and then differentiating the variations of such features during code evolution using sandbox evasion techniques. With the proposed algorithm, 240 malware samples with sandbox-bypassing behaviors can be uncovered successfully from 7 malware families. Compared with the JOE analysis system, the proposed algorithm improves the accuracy by 12.5% and reduces the false positive to 1%, which validates the proposed correctness and effectiveness.
-
Key words:
- Malware /
- Sandbox evasion /
- Static similarity
-
表 1 沙箱規(guī)避代碼進(jìn)化示意
Malicious code A Evasive Malicious code B Main_behavior( ) Main_behavior( ) { { 1 Registry_opeartion( ) 1 flag = check_sandbox( ) 2 Process_injection( ) 2 if (flag == True): 3 File_compress( ) 3 do_benign( ) or exit() 4 Connection_C&C_server( ) 4 else: 5 Waiting_for_instruction( ) 5 Registry_opeartion( ) 6 File_send( ) 6 Process_injection( ) } 7 File_compress( ) 8 Connection_C&C_server( ) 9 Waiting_for_ instruction( ) 10 File_send( ) } 下載: 導(dǎo)出CSV
表 2 規(guī)避行為檢測算法
For $\left( {{M_i},{M_j}} \right)$ in $C_M^2$: PS $\left( {{M_i},{M_j}} \right)$ = $\alpha $ if $\alpha < \varepsilon $: continue ${\rm PB}\left( {{M_i},{M_j}} \right) = \beta $ if $\alpha - \beta > \tau $: if ${B_i} > {B_j}$: ${M_j}$ is an evasive malware else: ${M_i}$ is an evasive malware else: No Evasion 下載: 導(dǎo)出CSV
表 3 惡意代碼家族情況
家族名稱 數(shù)量 時(shí)間分布 Bifrose 317 2008~2015 Dridex 57 2012~2014 Necurs 154 2011~2016 Sfone 151 2009~2016 Unruy 725 2008~2016 Urleas 57 2010~2015 Confidence 166 2011~2016 下載: 導(dǎo)出CSV
表 4 沙箱規(guī)避情況統(tǒng)計(jì)
家族名稱 樣本數(shù)量 沙箱規(guī)避樣本數(shù)量 百分比(%) Bifrose 317 41 12.9 Dridex 57 22 38.5 Necurs 154 40 25.9 Sfone 151 11 7.2 Unruy 725 70 9.6 Urleas 57 30 52.6 Confidence 166 26 15.6 下載: 導(dǎo)出CSV
表 5 檢測結(jié)果對比
TP TN FP FN 精度(%) TPR (%) FPR (%) F1 JOE 232 1294 52 49 81.6 82.5 3.8 0.8204 MSED 226 1331 14 56 94.1 80.1 1 0.8653 下載: 導(dǎo)出CSV
-
ANUBIS: Analyzing unknown binaries[OL]. www.anubis.iseclab.org, 2015. YIN Heng and SONG Dawn. Temu: Binary code analysis via whole-system layered annotative execution[R]. Submitted to Vee University of California, Berkeley, Tech Rep, 2010. CUCKOO Sandbox. Automated malware analysis[OL]. www.cuckoosandbox.org, 2016. RAIU C, HASBINI M, BEOLV S, et al. From Shamoon to Stonedrill-Wipers attacking Saudi organizations and beyond[R]. Kaspersky Lab, March, 2017. YOKOYAMA A, ISHII K, and TANABE R. SandPrint: Fingerprinting malware sandboxes to provide intelligence for sandbox evasion[C]. International Symposium on Research in Attacks, Intrusions, and Defenses, SudParis, France, 2016: 165–187. KIRAT D, VINGA G, and KRUEGEL C. Barebox: Efficient malware analysis on bare-metal[C]. Proceeding of the 27th Annual Computer Security Applications Conference, Orlando, USA, 2011: 403–412. CRANDALL J R, WASSERMANN G, and OLIVEIRA D A S. Temporal search: Detecting hidden malware timebombs with virtual machines[J]. ACM SIGARCH Computer Architecture News, 2006, 34(5): 25–36. doi: 10.1145/1168919 KIRAT D and VIGNA G. MalGene: Automatic extraction of malware analysis evasion signature[C]. Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Los Angeles, USA, 2015: 769–780. GILBOY M R. Fighting evasive malware with DVasion[D]. [Master dissertation], University of Maryland, College Park, 2016: 31–44. TANBE R. Evasive malware via identifier implanting[C]. International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, Pairs, France, 2018: 162–184. KRUEGEL C. Evasive malware exposed and deconstructed[C]. RSA Conference, San Francisco, USA, 2015: 112–120. MIRAMIRKHANI N, APPINI M P, and NIKIFORAKIS N. Spotless sandboxes: Evading malware analysis systems using wear-and-tear artifacts[C]. IEEE Symposium on Security and Privacy, San Jose, USA, 2017: 1009–1024. BINDIFF[OL]. www.zynamics.com/bindiff.html. 2017. 張一弛. 基于反編譯的惡意代碼檢測關(guān)鍵技術(shù)研究與實(shí)現(xiàn)[D]. [博士論文], 解放軍信息工程大學(xué), 2009: 22–39.ZHANG Yichi. Research and Implementation of critical technology in malware detection based on decompilation[D]. [Ph.D. dissertation], PLA Information and Engineering University, 2009: 22–39. KI Y, KIM E, and KIM H. A novel approach to detect malware based on API call sequence analysis[J]. International Journal of Distributed Sensor Networks, 2015, 58(7): 3201–3206. MALWAREBENCHMARK[OL]. www.malwarebenchmark.org, 2018. JOESECURITY Sandbox[OL]. www.joesandbox.com, 2018. -