車載視頻下改進的核相關濾波跟蹤算法
doi: 10.11999/JEIT171109
基金項目:
國家自然科學基金(61471124),福建省重大重點科技項目(2017H6009, 2018H0018),賽爾網(wǎng)絡創(chuàng)新項目(NGII20160208, NGII20170201)
Improved Kernel Correlation Filtering Tracking for Vehicle Video
Funds:
The National Natural Science Foundation of China (61471124), The Major Science and Technology Projects in Fujian Proviuce (2017H6009, 2018H0018), The Cernet Innovation Projects (NGII20160208, NGII20170201)
-
摘要: 針對相關濾波跟蹤算法在車載視頻下由于環(huán)境復雜及目標尺度變化等情況下容易跟蹤失敗的問題,該文提出一種基于背景信息的尺度自適應相關濾波跟蹤算法。首先利用背景感知相關濾波跟蹤器融合方向梯度直方圖特征預測目標下一幀位置,然后根據(jù)預測位置選取圖像塊進行檢測,最后結(jié)合動態(tài)尺度比例金字塔模型對目標進行尺度估計。實驗選取了KITTI數(shù)據(jù)庫中23段車載視頻和標注國內(nèi)的4段車載視頻進行測試,實驗結(jié)果表明,該算法能有效降低車載環(huán)境的復雜背景、目標尺度變化等因素干擾,整體性能優(yōu)于KCF, DSST, SAMF, SATPLE等主流相關濾波算法,對車載環(huán)境下復雜背景和尺度變化的目標跟蹤具有魯棒性。Abstract: For videos captured by in-car cameras, the filter-based tracking is a challenging task due to complex environments and mutable object scales. A scale adaptive tracking filter is proposed based on the background information. Firstly, the relative motion of each object is estimated by extracting features from gradient histograms between frames. Then, the object location on the next frame is determined and utilized to delimit an image block. Finally, the object scale is obtained through dynamic scaling pyramid model within image block. The proposed algorithm is examined by 27 in-car videos including 23 KITTI videos and 4 domestic videos. In experiments, the proposed algorithm suppresses effectively the interferences of environments and objects. It achieves more accurate and more robust object tracking than several popular benchmarks including KCF, DSST, SAMF, SATPLE.
-
劉紅亮, 周生華, 劉宏偉, 等. 一種航跡恒虛警的目標檢測跟蹤一體化算法[J]. 電子與信息學報, 2016, 38(5): 1072-1078. doi: 10.11999/JEIT150638. LIU Hongliang, ZHOU Shenghua, LIU Hongwei, et al. An integrated target detection and tracking algorithm with constant track false alarm rate[J]. Journal of Electronics Information Technology, 2016, 38(5): 1072-1078. doi: 10.11999/JEIT150638. BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]. Computer Vision and Pattern Recognition, San Francisco, 2010: 2544-2550. HENRIQUES J F, RUI C, MARTINS P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]. European Conference on Computer Vision, Florence, 2012: 702-715. HENRIQUES J F, RUI C, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2015, 37(3): 583-596. doi: 10.1109/tpami.2014.2345390. 畢篤彥, 庫濤, 查宇飛, 等. 基于顏色屬性直方圖的尺度目標跟蹤算法研究[J]. 電子與信息學報, 2016, 38(5): 1099-1106. doi: 10.11999/JEIT150921. BI Duyan, KU Tao, ZHA Yufei, et al. Scale-adaptive object tracking based on color names histogram[J]. Journal of Electronics Information Technology, 2016, 38(5): 1099-1106. doi: 10.11999/JEIT150921. QI Yuankai, ZHANG Shengping, QIN Lei, et al. Hedged deep tracking[J]. Computer Vision and Pattern Recognition, 2016, 4303-4311. doi: 10.1109/cvpr.2016.466. DANELLJAN M, HGER G, KHAN F S, et al. Accurate Scale Estimation for Robust Visual Tracking[C]. British Machine Vision Conference, Nottingham, 2014: 61-65. LI Yang and ZHU Jianke. A scale adaptive kernel correlation filter tracker with feature integration[C]. Eu-ropean Conference on Computer Vision, 2014, 8926: 254-265. doi: 10.1007/978-3-319-16181-5_18. XU Yulong, WANG Jiabao, LI Hang, et al. Patch-based scale calculation for real-time visual tracking[J]. IEEE Signal Processing Letters, 2015, 23(1): 40-44. doi: 10.1109/wcsp. 2015.7341015. AKIN O, ERDEM E, ERDEM A, et al. Deformable part- based tracking by coupled global and local corr-elation filters[J]. Journal of Visual Communication Image Representation, 2016, 38(C): 763-774. doi: 10.1016/j.jvcir. 2016.04.018. YAO Rui, XIA Shixiong, SHEN Fumin, et al. Exploiting spatial structure from parts for adaptive kerneli-zed correlation filter tracker[J]. IEEE Signal Processing Letters, 2016, 23(5): 658-662. doi: 10.1109/lsp.2016.2545705. CAMPLANI M, HANNUNA S, MIRMEHDI M, et al. Real- time RGB-D tracking with depth scaling kern-elised correlation filters and occlusion handling[C]. British Machine Vision Conference, SWANSEA, 2015. 2015: 141-145. doi: 10.5244/c.29.145. MA Chao, HUANG Jiabin, YANG Xiaokang, et al. Robust Visual Tracking via Hierarchical Convolutional Features[J]. Computer Vision and Pattern Recognition, 2017, (2017): 425-434. doi: 10.1007/978-3-319-70090-8_44. DANELLJAN M, BHAT G, KHAN F S, et al. ECO: Efficient convolution operators for tracking[C]. Computer Vision and Pattern Recognition, Honolulu, 2017: 21-26. doi: 10.1109/ cvpr.2017.733. DANELLJAN M, HAGER G, KHAN F S, et al. Learning spatially regularized correlation filters for visua-l tracking[C]. International Conference on Computer Vision, Santiago, 2015: 4310-4318. doi: 10.1109/iccv.2015.490. GALOOGAHI H K, FAGG A, and LUCEY S. Learning background-aware correlation filters for visual tracking[J]. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, 2017: 21-26. doi: 10.1109/iccv.2017.129. DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking[C]. Computer Vision and Pattern Recognition,Washington, 2014: 1090-1097. GALOOGAHI H K, SIM T, and LUCEY S. Multi-channel correlation filters[C]. IEEE International Confer-ence on Computer Vision, Sydney, 2013: 3072-3079. RUI C and BATISTA J. Beyond hard negative mining: efficient detector learning via block-circulant deco- mposition[C]. IEEE International Conference on Computer Vision, Sydney, 2013: 2760-2767. BODDETI V N, KANADE T, and KUMAR B V K V. Correlation filters for object alignment[C]. Computer Vision and Pattern Recognition (CVPR), Portland, 2013: 2291-2298. MUELLER M, SMITH N, and GHANEM B. Context-aware correlation filter tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 2017: 1387-1395. GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the KITTI dataset[J]. International Journal of Robotics Research, 2013, 32(11): 1231-1237. doi: 10.1177/ 0278364913491297. WU Yi, LIM Jongwoo, and YANG Minghsuan. Online object tracking: A benchmark[C]. Computer Vision and Pattern Recognition, Portland, 2013: 2411-2418. BERTINETTO L, VALMADRE J, GOLODETZ S, et al. Staple: Complementary learners for real-time trac-king[C]. Computer Vision and Pattern Recognition, Las Vegas, 2016: 1401-1409. -
計量
- 文章訪問數(shù): 1139
- HTML全文瀏覽量: 157
- PDF下載量: 104
- 被引次數(shù): 0