一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

面向時(shí)序感知的多類別商品方面情感分析推薦模型

丁永剛 李石君 付星 劉夢(mèng)君

丁永剛, 李石君, 付星, 劉夢(mèng)君. 面向時(shí)序感知的多類別商品方面情感分析推薦模型[J]. 電子與信息學(xué)報(bào), 2018, 40(6): 1453-1460. doi: 10.11999/JEIT170938
引用本文: 丁永剛, 李石君, 付星, 劉夢(mèng)君. 面向時(shí)序感知的多類別商品方面情感分析推薦模型[J]. 電子與信息學(xué)報(bào), 2018, 40(6): 1453-1460. doi: 10.11999/JEIT170938
DING Yonggang, LI Shijun, FU Xing, LIU Mengjun. Temporal-aware Multi-category Products Recommendation Model Based on Aspect-level Sentiment Analysis[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1453-1460. doi: 10.11999/JEIT170938
Citation: DING Yonggang, LI Shijun, FU Xing, LIU Mengjun. Temporal-aware Multi-category Products Recommendation Model Based on Aspect-level Sentiment Analysis[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1453-1460. doi: 10.11999/JEIT170938

面向時(shí)序感知的多類別商品方面情感分析推薦模型

doi: 10.11999/JEIT170938
基金項(xiàng)目: 

國家自然科學(xué)基金(61502350),國家自然科學(xué)基金聯(lián)合基金(U1536114)

Temporal-aware Multi-category Products Recommendation Model Based on Aspect-level Sentiment Analysis

Funds: 

The National Natural Science Foundation of China (61502350), The Joint Funds of National Natural Science foundation of China (U1536114)

  • 摘要: 電子商務(wù)網(wǎng)站中的評(píng)論數(shù)據(jù)隱含著商品特征和用戶情感,現(xiàn)有基于方面情感分析的推薦研究大多通過抽取同一類別商品評(píng)論數(shù)據(jù)中用戶對(duì)商品不同方面的情感來捕捉用戶方面偏好,忽略了不同類別商品有不同方面以及用戶的方面偏好隨時(shí)間變化的特點(diǎn)。對(duì)此,該文提出一種面向時(shí)序感知的多類別商品方面情感分析推薦模型,該模型對(duì)用戶、商品類別、商品、商品方面、方面情感和時(shí)間統(tǒng)一建模,以發(fā)現(xiàn)用戶對(duì)不同類別商品的方面偏好隨時(shí)間變化的特點(diǎn),并據(jù)此做出推薦。該模型能夠推斷用戶在任意時(shí)間對(duì)商品的方面偏好,從而為用戶提供可解釋的推薦。兩個(gè)真實(shí)數(shù)據(jù)集的實(shí)驗(yàn)結(jié)果表明,與其它基于時(shí)間或方面情感分析的推薦模型相比,該文提出的模型在top-N推薦準(zhǔn)確率和召回率評(píng)價(jià)指標(biāo)上均獲得顯著改善。
  • PERO and HORVAT T. Opinion-driven matrix factorization for rating prediction[C]. Proceedings of User Mode-ling, Adaptation, and Personalization, Rome, Italy, 2013: 1-13. doi: 10.1007/978-3-642-38844-6_1.
    LEUNG W K, CHAN C F and CHUNG F L. Integrating collaborative filtering and sentiment analysis: A rating inference approach[C]. Proceedings of European Conference on Artificial Intelligence Workshop, Riva del Garda, 2006: 300-307.
    SCHOUTEN K and FRASINCAR F. Survey on aspect-level sentiment analysis[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(3): 813-830. doi: 10.1109/TKDE. 2015.2485209.
    WANG Feng and CHEN Li. Review mining for estimating users ratings and weights for product aspects[J]. Web Intelligence, 2015, 13(3): 137-152. doi: 10.3233/WEB-150317.
    OU W and HUYNH V N. Rating supervised latent topic model for aspect discovery and sentiment classification in on-line review mining[C]. Proceedings of 13th International Conference on Modeling Decisions for Artificial Intelligence, Sant Juli de Lria, Andorra, 2016: 151-164. doi: 10.1007 /978-3- 319-45656-0_13.
    MUSTO C, DE GEMMIS M, SEMERARO G, et al. A multi-criteria recommender system exploiting aspect-based sentiment analysis of users, reviews[C]. Proceedings of the Eleventh ACM Conference on Recommender Systems, Como, Italy, 2017: 321-325. doi: 10.1145/3109859.3109905.
    ZHANG Yongfeng, ZHANG Haochen, and ZHANG Min, et al. Do users rate or review? boost phrase-level sentiment labeling with review-level sentiment classification[C]. Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, Gold Coast, Australia, 2014: 1027-1030.
    WANG Shuai, CHEN Zhiyuan, and LIU Bing. Mining aspect- specific opinion using a holistic lifelong topic model[C]. Proceedings of the 25th International Conference on World Wide Web, Montreal, Canada, 2016: 167-176. doi: 10.1145/ 2872427.2883086.
    ZHANG Yongfeng, LAI Guokun, ZHANG Min, et al. Explicit factor models for explainable recommendation based on phrase-level sentiment analysis[C]. Proceeding of The 37th International ACM SIGIR Conference on Research Development in Information Retrieval. Gold Coast, Australia, 2014: 83-92. doi: 10.1145/2600428.2609579.
    CHEN Xu, XU Tao, ZHANG Yongfeng, et al. Learning to rank features for recommendation over multiple categories[C]. Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, Pisa, Italy, 2016: 305-314. doi: 10.1145/2911451.2911549.
    WU Yao and ESTER M. FLAME: A probabilistic model combining aspect based opinion mining and collaborative filtering[C]. Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, Shanghai, China, 2015: 199-208. doi: 10.1145/2684822.2685291.
    BAUMAN K, LIU Bing, and TUZHILIN A. Aspect based recommendations: recommending items with the most valuable aspects based on user reviews[C]. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Canada, 2017: 717-725. doi: 10.1145 /3097983.3098170.
    HE Yulan, LIN Chenghua, GAO Wei, et al. Dynamic joint sentiment-topic model[J]. ACM Transactions on Intelligent Systems Technology, 2014, 5(1): 1-21.
    DERMOUCHE M, VELCIN J, KHOUAS L, et al. A Joint model for topic-sentiment evolution over time[C]. Proceedings of 2014 IEEE International Conference on Data Mining, Shenzhen, China, 2014: 773-778. doi: 10.1109/ICDM. 2014.82.
    HU Yan, XU Xiaofei, and LI Li. Analyzing topic-sentiment and topic evolution over time from social media[C]. Proceedings of the 9th International Conference on Knowledge Science, Engineering and Management, Passau, Germany, 2016: 97-109. doi: 10.1007/978-3-319-47650-6_8.
    KOREN Y. Collaborative filtering with temporal dynamics [C]. Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, 2009: 447-456. doi: 10.1145/1557019.1557072.
    XIONG Liang, CHEN Xi, and HUANG Tzukuo, et al. Temporal collaborative filtering with bayesian probabilistic tensor factorization[C]. Proceedings of the SIAM International Conference on Data Mining, Columbus, USA, 2010: 211-222.
    RAFAILIDIS D and NANOPOULOS A. Modeling users preference dynamics and side information in recommender systems[J]. IEEE Transactions on Systems, Man, Cybernetics: Systems, 2016, 46(6): 782-792.
    LIU Xin. Modeling users, dynamic preference for personalized recommendation[C]. Proceedings of the Twenty- Fourth International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina, 2015: 1785-1791. doi: 10.1137/1.9781611972801.19.
    SHANG Yanmin, XU Kefu, ZHANG Chuang, et al. FTM: Recommending the right items for user temporal interests with matrix factorization through topic model[C]. Proceedings of the IEEE First International Conference on Data Science in Cyberspace, Changsha, China, 2017: 189-198. doi: 10.1109/DSC.2016.20.
    MNIH A and SALAKHUTDINOV R. Probabilistic matrix factorization[C]. Proceedings of the Twenty-First Annual Conference on Neural Information Processing Systems, Vancouver, Canada, 2007: 1257-1264.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1216
  • HTML全文瀏覽量:  207
  • PDF下載量:  186
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-10-11
  • 修回日期:  2018-04-17
  • 刊出日期:  2018-06-19

目錄

    /

    返回文章
    返回