基于Salisbury屏幕的UHF雷達頻譜搬移
doi: 10.11999/JEIT170833
基金項目:
國家自然科學基金(61701061),重慶市基礎科學與前沿技術(shù)研究專項資金(CSTC2017JCYJA0817),重慶郵電大學博士啟動基金(A2016-110)
Spectrum Shifting for UHF Radar Based on Salisbury Screen
Funds:
The National Natural Science Foundation of China (61701061), The Chongqing Research Program of Basic Research and Frontier Technology (CSTC2017JCYJA0817), The Doctor Start-up Funding of Chongqing University of Posts and Telecommunications (A2016-110)
-
摘要: 為了減縮雷達反射截面(RCS),提高工作帶寬,該文基于時控反射面提出一種新型Salisbury屏幕,研究UHF雷達的頻譜搬移。首先利用電磁特性的可控性,設計一種由可調(diào)電阻層、介質(zhì)層和金屬接地層構(gòu)成的反射調(diào)制板,然后構(gòu)建動態(tài)二相傳輸線等效電路,并且在周期性頻率選擇表面(FSS)加載一層電感。理論推導和仿真驗證表明該屏幕能對大帶寬多方向、不同極化的UHF雷達來波信號進行頻譜搬移,減縮RCS,降低遠距離移動目標的檢測概率。Abstract: To reduce Radar Cross-Section (RCS), improve operation bandwidth, this paper proposes an innovative Salisbury screen based on time-controlled surface and researches the frequency shifting of UHF radar signal. First, a reflective modulation board which is composed of adjustable impedance sheet, dielectric spacer and grounded slab is presented by using the controllability of electromagnetic properties. Second, the equivalent circuit of dynamic two-phase transmission line is established, and an inductance layer is loaded on a periodic Frequency Selective Surface (FSS). Theoretical derivation and simulation results show that Salisbury screen can realize the spectrum shifting for UHF radar signal with large bandwidth, multi-directional, as well as different polarizations. Moreover, this screen can reduce RCS and detection probability of the long distance moving target.
-
WANG C, CHEN M, LEI H, et al. Radar stealth and mechanical properties of a broadband radar absorbing structure[J]. Composites Part B: Engineering, 2017, 123: 19-27. doi: 10.1016/j.compositesb.2017.05.005. KNOTT E F, TULEY M T, and SHAEFFER J F. Radar Cross Section[M]. 2nd Edition, Norwood, Artech House, 1993. PANG Y, CHENG H, ZHOU Y, et al. Ultrathin and broadband high impedance surface absorbers based on metamaterial substrates[J]. Optics Express, 2012, 20(11): 12515-12520. doi: 10.1364/OE.20.012515. LI W, CHEN M, ZENG Z, et al. Broadband composite radar absorbing structures with resistive frequency selective surface: Optimal design, manufacturing and characterization[J]. Composites Science and Technology, 2017, 145: 10-14. doi: 10.1016/j.compscitech.2017.03.009. CALAOZ C and ITOH T. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications[M]. Wiley, 2006: 105-140. 周禹龍, 曹祥玉, 高軍, 等. 雙頻頻率選擇表面及其在微帶天線寬帶RCS減縮中的應用[J]. 電子與信息學報, 2017, 39(6): 1446-1451. doi: 10.11999/JEIT160854. ZHOU Yulong, CAO Xiangyu, GAO Jun, et al. Dualband frequency selective surface and its application to wideband RCS reduction of the microstrip antenna[J]. Journal of Electronics Information Technology, 2017, 39(6): 1446-1451. doi: 10.11999/JEIT160854. WU T K. Frequency Selective Surface and Grid Array[M]. New York: Wiley, 1995: 1-10. BOZZI M, PERRENGRINI L, WEINZIERL J, et al. Design, fabrication and measurement of frequency-selective surfaces [J]. Optical Engineering, 2000, 39(8): 2263-2269. doi: 10.1117 /1.1305261. 路寶, 龔書喜, 凌勁, 等. 一種新型頻率選擇表面及其在天線雷達散射截面減縮中的應用[J]. 電子與信息學報, 2010, 32(1): 199-202. doi: 10.3724/SP.J.1146.2009.00046. LU Bao, GONG Shuxi, LING Jin, et al. A novel frequency selective surface structure and its application to RCS reduction of antennas[J]. Journal of Electronics Information Technology, 2010, 32(1): 199-202. doi: 10.3724/ SP.J.1146.2009.00046. XU H, BIE S, XU Y, et al. Broad bandwidth of thin composite radar absorbing structures embedded with frequency selective surfaces[J]. Composites Part A: Applied Science and Manufacturing, 2016, 80: 111-117. doi: 10.1016/ j.compositesa.2015.10.019. COSTA F, MONORCHIO A, and MANARA G. Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(5): 1551-1558. doi 10.1109/TAP.2010.2044329. GILL N, PUTHUCHERI S, SINGH D, et al. Critical analysis of frequency selective surfaces embedded composite microwave absorber for frequency range 28 GHz[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(2): 1259-1270. ZENG X, ZHANG L, WAN G, et al. Tunable and broadband radar absorber based on PIN diodes controllable FSS[C]. 11th International Symposium on Antennas, Propagation and EM Theory (ISAPE), Guilin, China, 2016: 720-722. QI K, YUAN X, and WANG Y. A tunable microwave absorber based on active frequency selective surface[C]. Progress in Electromagnetics Research Symposium Proceedings, Guangzhou, China, 2014: 791-793. COSTA F, GENOVESI S, and MONORCHIO A. A frequency selective absorbing ground plane for low-RCS microstrip antenna arrays[J]. Progress in Electromagnetics Research, 2012, 126: 317-332. doi: 10.2528/PIER12012904. WANG H, KONG P, CHENG W, et al. Broadband tunability of polarization-insensitive absorber based on frequency selective surface[J]. Scientific Reports, 2016, 6: 1-8. doi: 10.1038/srep23081. WANG Y and TENNANT A. Time-modulated reflector array[J]. Electronics Letters, 2012, 48(16): 972-974. doi: 10.1049/el.2012.1893. WANG Y and TENNANT A. Experimental time-modulated reflector array[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(12): 6533-6536. doi: 10.1109/TAP. 2014.2362129. -
計量
- 文章訪問數(shù): 1550
- HTML全文瀏覽量: 185
- PDF下載量: 145
- 被引次數(shù): 0