一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于多特征擴散方法的顯著性物體檢測

葉鋒 洪斯婷 陳家禎 鄭子華 劉廣海

葉鋒, 洪斯婷, 陳家禎, 鄭子華, 劉廣海. 基于多特征擴散方法的顯著性物體檢測[J]. 電子與信息學報, 2018, 40(5): 1210-1218. doi: 10.11999/JEIT170827
引用本文: 葉鋒, 洪斯婷, 陳家禎, 鄭子華, 劉廣海. 基于多特征擴散方法的顯著性物體檢測[J]. 電子與信息學報, 2018, 40(5): 1210-1218. doi: 10.11999/JEIT170827
YE Feng, HONG Siting, CHEN Jiazhen, ZHENG Zihua, LIU Guanghai. Salient Object Detection via Multi-feature Diffusion-based Method[J]. Journal of Electronics & Information Technology, 2018, 40(5): 1210-1218. doi: 10.11999/JEIT170827
Citation: YE Feng, HONG Siting, CHEN Jiazhen, ZHENG Zihua, LIU Guanghai. Salient Object Detection via Multi-feature Diffusion-based Method[J]. Journal of Electronics & Information Technology, 2018, 40(5): 1210-1218. doi: 10.11999/JEIT170827

基于多特征擴散方法的顯著性物體檢測

doi: 10.11999/JEIT170827
基金項目: 

國家自然科學基金(61671077, 61463008),福建省自然科學基金(2017J01739),福建省教育廳項目(JA15136),福建師范大學教學改革研究項目(I201602015)

Salient Object Detection via Multi-feature Diffusion-based Method

Funds: 

The National Natural Science Foundation of China (61671077, 61463008), The Natural Science Foundation of Fujian Province (2017J01739), The Scientific Research Fund of Fujian Education Department (JA15136), The Teaching Reform Project of Fujian Normal University (I201602015)

  • 摘要: 現(xiàn)有的大部分基于擴散理論的顯著性物體檢測方法只用了圖像的底層特征來構(gòu)造圖和擴散矩陣,并且忽視了顯著性物體在圖像邊緣的可能性。針對此,該文提出一種基于圖像的多層特征的擴散方法進行顯著性物體檢測。首先,采用由背景先驗、顏色先驗、位置先驗組成的高層先驗方法選取種子節(jié)點。其次,將選取的種子節(jié)點的顯著性信息通過由圖像的底層特征構(gòu)建的擴散矩陣傳播到每個節(jié)點得到初始顯著圖,并將其作為圖像的中層特征。然后結(jié)合圖像的高層特征分別構(gòu)建擴散矩陣,再次運用擴散方法分別獲得中層顯著圖、高層顯著圖。最后,非線性融合中層顯著圖和高層顯著圖得到最終顯著圖。該算法在3個數(shù)據(jù)集MSRA10K,DUT-OMRON和ECSSD上,用3種量化評價指標與現(xiàn)有4種流行算法進行實驗結(jié)果對比,均取得最好的效果。
  • JERRIPOTHULA K R, CAI J, and YUAN J. Image Co-segmentation via saliency Co-fusion[J]. IEEE Transactions on Multimedia, 2016, 18(9): 1896-1909. doi: 10.1109/TMM.2016.2576283.
    LUO P, TIAN Y, WANG X, et al. Switchable deep network for pedestrian detection[C]. IEEE Computer Vision and Pattern Recognition, Columbus, USA, 2014: 899-906. doi: 10.1109/CVPR.2014.120.
    ZHAO R, OUYANG W, and WANG X. Unsupervised salience learning for person re-identification[C]. IEEE Computer Vision and Pattern Recognition, Portland, Oregon, USA, 2013: 3586-3593. doi: 10.1109/CVPR.2013.460.
    LIU G H, YANG J Y, and LI Z Y. Content-based image retrieval using computational visual attention model[J]. Pattern Recognition, 2015, 48(8): 2554-2566. doi: 10.1016/ j.patcog.2015.02.005
    唐紅梅, 吳士婧, 郭迎春, 等. 自適應閾值分割與局部背景線索結(jié)合的顯著性檢測[J]. 電子與信息學報, 2017, 39(7): 1592-1598. doi: 10.11999/JEIT160984.
    TANG Hongmei, WU Shijing, GUO Yingchun, et al. Saliency detection based on adaptive threshold segmentation and local background clues[J]. Journal of Electronics Information Technology, 2017, 39(7): 1592-1598. doi: 10.11999/JEIT160984.
    JIANG H, WANG J, YUAN Z, et al. Automatic salient object segmentation based on context and shape prior[C]. British Machine Vision Conference, Dundee, UK, 2011: 110.1-110.12. doi: 10.5244/C.25.110.
    WANG L, WANG L, LU H, et al. Saliency detection with recurrent fully convolutional networks[C]. European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 825-841. doi: 10.1007/978-3-319-46493-0_50.
    YANG J and YANG M H. Top-down visual saliency via joint CRF and dictionary learning[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2017, 39(3): 576-588. doi: 10.1109/TPAMI.2016.2547384.
    HU P and RAMANAN D. Bottom-up and top-down reasoning with hierarchical rectified gaussians[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 5600-5609. doi: 10.1109/CVPR.2016. 604.
    PERAZZI F, Krhenbhl P, PRITCH Y, et al. Saliency filters: Contrast based filtering for salient region detection[C]. IEEE Computer Vision and Pattern Recognition, Rhode Island, 2012: 733-740. doi: 10.1109/CVPR.2012. 6247743.
    YAN Q, XU L, SHI J, et al. Hierarchical saliency detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 1155-1162. doi: 10.1109/ CVPR.2013.153.
    WANG Q, ZHENG W, and PIRAMUTHU R. GraB: Visual saliency via novel graph model and background priors[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 535-543. doi: 10.1109/ CVPR.2016.64.
    ZHU W, LIANG S, WEI Y, et al. Saliency optimization from robust background detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 2814-2821. doi: 10.1109/CVPR.2014.360.
    HAREL J, KOCH C, and PERONA P. Graph-based visual saliency[C]. International Conference on Neural Information Processing Systems, Vancouver, Canada, 2006: 545-552. doi: 10.1.1.70.2254.
    QIN Y, LU H, XU Y, et al. Saliency detection via cellular automata[C]. IEEE Computer Vision and Pattern Recognition, Boston, USA, 2015: 110-119. doi: 10.1109/ CVPR.2015.7298606.
    YU J G, XIA G S, GAO C, et al. A computational model for object-based visual saliency: Spreading attention along gestalt cues[J]. IEEE Transactions on Multimedia, 2016, 18(2): 273-286. doi: 10.1109/TMM.2015.2505908.
    YANG C, ZHANG L, LU H, et al. Saliency detection via graph-based manifold ranking[C]. IEEE Computer Vision and Pattern Recognition, Portland, USA, 2013: 3166-3173. doi: 10.1109/CVPR.2013.407.
    JIANG P, VASCONCELOS N, and PENG J. Generic promotion of diffusion-based salient object detection[C]. IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 217-225. doi: 10.1109/ICCV.2015.33.
    ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2012, 34(11): 2274-2282. doi: 10.1109/TPAMI.2012.120.
    LUXBURG U V. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17(4): 395-416. doi: 10.1007/ s11222-007-9033-z.
    PENG H, LI B, LING H, et al. Salient object detection via structured matrix decomposition[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2017, 39(4): 818-832. doi: 10.1109/TPAMI.2016.2562626.
    WU Y. A unified approach to salient object detection via low rank matrix recovery[C]. IEEE Computer Vision and Pattern Recognition, Rhode Island, 2012: 853-860. doi: 10.1109/ CVPR.2012.6247758.
    ZHANG Lihe, YANG C, LU H, et al. Ranking saliency[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(9): 1892-1904. doi: 10.1109/TPAMI. 2016.2609426.
    Borji A, CHENH Mingming, JIANG Huaizu, et al. Salient object detection: A benchmark[C]. IEEE Computer Vision and Pattern Recognition, Boston, USA, 2015: 5706-5722. doi: 10.1109/TIP.2015.2487833.
  • 加載中
計量
  • 文章訪問數(shù):  1524
  • HTML全文瀏覽量:  200
  • PDF下載量:  155
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-08-23
  • 修回日期:  2018-01-11
  • 刊出日期:  2018-05-19

目錄

    /

    返回文章
    返回