人工噪聲輔助的物理層安全信號峰均功率比減低算法
doi: 10.11999/JEIT170739
基金項目:
國家自然科學基金(91738201, 61302102),江蘇省屬高校自然科學研究面上項目(13KJB510023)
Peak-to-average Power Ratio Reduction Algorithm of Artificial-noise-aided Secure Signal
Funds:
The National Natural Science Foundation of China (91738201, 61302102), The Natural Science Foundation of the university of Jiangsu Province (13KJB510023)
-
摘要: 人工噪聲輔助的物理層安全通信系統(tǒng)采用人工噪聲破壞竊聽信道的方式提升系統(tǒng)安全信道容量是近年來物理層安全通信領域研究的經典系統(tǒng)模型之一。該文針對這一模型中發(fā)射信號存在高峰均功率比問題,利用噪聲子空間提供的冗余度提出一種基于噪聲子空間功率分配的峰均功率比降低算法。該算法通過分式規(guī)劃、DC規(guī)劃以及二次非凸等式約束松弛將非凸的峰均功率比優(yōu)化問題轉化為一系列的凸問題迭代求解。仿真結果表明在系統(tǒng)放大器存在一定線性范圍的約束下,該文提出的算法能夠有效降低人工噪聲輔助的物理層安全通信系統(tǒng)發(fā)射信號的峰均功率比問題,達到提高系統(tǒng)中合法用戶的通信性能的目的。Abstract: The research of improving the Secrecy Capacity (SC) of wireless communication system using Artificial Noise (AN) is one of the classics models in the field of physical layer security communication. Considering the Peak-to-Average Power Ratio (PAPR) problem of transmit signal, a power allocation of AN subspaces algorithm is proposed to reduce the PAPR of transmit signal based on convex optimization. This algorithm utilizes a series of convex optimization problems to approach the nonconvex PAPR optimization problem based on fractional programming, Difference of Convex (DC) functions programming and nonconvex quadratic equality constraint transformation. Simulation results show that the proposed algorithm reduce the PAPR value of transmit signal to improve the communication performance of legitimate user compared with benchmark problems.
-
GE Xiaohu, TU Song, MAO Guoqiang, et al. 5G ultra-dense cellular networks[J]. IEEE Wireless Communications, 2016, 23(1): 72-79. doi: 10.1109/MWC.2016.7422408. GE Xiaohu, ZI Ran, WANG Haichao, et al. Multi-user massive MIMO communication systems based on irregular antenna arrays[J]. IEEE Transactions on Wireless Communications, 2016, 15(8): 5287-5301. doi: 10.1109/TWC. 2016.2555911. GOEL S and NEGI R. Guaranteeing secrecy using artificial noise[J]. IEEE Transactions on Wireless Communications, 2008, 7(6): 2180-2189. doi: 10.1109/TWC.2008.060848. ZHOU Xiangyun and MCKAY M R. Secure transmission with artificial noise over fading channels: Achievable rate and optimal power allocation[J]. IEEE Transactions on Vehicular Technology, 2010, 59(8): 3831-3842. doi: 10.1109/TVT.2010. 2059057. LIAO Weicheng, CHANG Tsunghui, MA Wingkin, et al. QoS-based transmit beamforming in the presence of eavesdroppers: An optimized artificial-noise-aided approach [J]. IEEE Transactions on Signal Processing, 2011, 59(3): 1202-1216. doi: 10.1109/TSP.2010.2094610. LIU Shuiyin, HONG Yi, and VITERBO E. Artificial noise revisited[J]. IEEE Transactions on Information Theory, 2015, 61(7): 3901-3911. doi: 10.1109/TIT.2015.2437882. TANG Yanqun, XIONG Jun, MA Dongtang, et al. Robust artificial noise aided transmit design for MISO wiretap channels with channel uncertainty[J]. IEEE Communications Letters, 2013, 17(11): 2096-2099. doi: 10.1109/LCOMM.2013. 100713.131673. LI Na, TAO Xiaofeng, and XU Jin. Artificial noise assisted communication in the multiuser downlink: Optimal power allocation[J]. IEEE Communications Letters, 2015, 19(2): 295-298. doi: 10.1109/LCOMM.2014.2385779. WANG Huiming, LIU Feng, and YANG Mengchen. Joint cooperative beamforming jamming and power allocation to secure AF relay systems[J]. IEEE Transactions on Vehicular Technology, 2015, 64(10): 4893-4898. doi: 10.1109/TVT.2014. 2370754. KAPETANOVIC D, ZHENG G, and RUSEK F. Physical layer security for massive MIMO: An overview on passive eavesdropping and active attacks[J]. IEEE Communications Magazine, 2015, 53(6): 21-27. doi: 10.1109/MCOM.2015. 7120012. ZHU Jun, SCHOBER R, and BHARGAVA V K. Secure transmission in multicell massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2014, 13(9): 4766-4781. doi: 10.1109/TWC.2014.2337308. ZHU Jun, SCHOBER R, and BHARGAVA V K. Linear precoding of data and artificial noise in secure massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2016, 15(3): 2245-2261. doi: 10.1109/TWC. 2015.2500578. LIU Xiaoran, MA Dongtang, XIONG Jun, et al. Power allocation for AN-aided beamforming design in MISO wiretap channels with finite-alphabet signaling[C]. 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), Montral, Canada, 2016: 1-6. doi: 10.1109/VTCFall.2016. 7881170. ANOH K, TANRIOVER C, ADEBISI B, et al. A new approach to iterative clipping and filtering PAPR reduction scheme for OFDM systems[J]. IEEE Access, 2017. doi: 10.1109/ACCESS.2017.2751620. DINKELBACH W. On nonlinear fractional programming [J]. Management Science, 1967, 13(7): 492-498. AN L T H and TAO P D. The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems[J]. Annals of Operations Research, 2005, 133(1/4): 23-46. doi: 10.1007/ s10479-004-5022-1. FUCHS B, SKRIVERVIK A, and MOSIG J R. Shape beam synthesis of arrays via sequential convex optimizations[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 1049-1052. doi: 10.1109/LAWP.2013.2280043. WANG Jiandong, ZHANG Qinghua, and LJUNG L. Revisiting the two-stage algorithm for hammerstein system identification[C]. Proceedings of the 48h IEEE Conference on Decision and Control Held Jointly with 2009 28th Chinese Control Conference, Shanghai, China, 2009: 3620-3625. doi: 10.1109/CDC.2009.5400243. RICHTER S, JONES C N, and MORARI M. Computational complexity certification for real-time MPC with input constraints based on the fast gradient method[J]. IEEE Transactions on Automatic Control, 2012, 57(6): 1391-1403. doi: 10.1109/TAC.2011.2176389. -
計量
- 文章訪問數: 1476
- HTML全文瀏覽量: 140
- PDF下載量: 131
- 被引次數: 0