基于增量式雙向主成分分析的機器人感知學習方法研究
doi: 10.11999/JEIT170561
-
2.
(河北工業(yè)大學機械工程學院 天津 300130)
國家自然科學基金(61503119, 61473113),天津市自然科學基金(15JCYBJC19800, 16JCZDJC30400),天津市智能制造科技重大專項(15ZXZNGX00090)
Robot Perceptual Learning Method Based on Incremental Bidirectional Principal Component Analysis
-
2.
(School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China)
The National Natural Science Foundation of China (61503119, 61473113), The Tianjin Natural Science Foundation (15JCYBJC19800, 16JCZDJC30400), The Tianjin Intelligent Manufacturing and Technology Key Project (15ZXZNGX00090)
-
摘要: 針對直觀協(xié)方差無關增量式主成分分析算法(CCIPCA)需要滿足零均值高斯分布的問題,該文提出含均值差向量更新的泛化CCIPCA算法(GCCIPCA),拓展了算法的適用范圍。其次,針對機器人感知學習存在的在線增量計算及有效數(shù)據(jù)降維等問題,將GCCIPCA的增量思想引入到現(xiàn)有的雙向主成分分析算法(BDPCA),提出基于增量式BDPCA(IBDPCA)的機器人感知學習方法。該方法直接針對圖像矩陣行列方向的類散度矩陣進行迭代估計,具有一定的泛化能力和快速的增量學習能力,提高了實時處理速度。最后,以機器人待抓取物塊作為感知對象進行實驗,結果表明所提算法能夠滿足機器人感知學習的實時處理需求,相比現(xiàn)有的增量式主成分分析算法,在收斂率、分類識別率、計算時間及所需內(nèi)存等性能方面均得到顯著提升。
-
關鍵詞:
- 機器人感知學習 /
- 增量學習 /
- 數(shù)據(jù)降維 /
- 直觀協(xié)方差無關增量式主成分分析 /
- 雙向主成分分析
Abstract: Existing Candid Covariance-free Incremental PCA (CCIPCA) has the limitation of the stable image inherent covariance, and a Generalized CCIPCA (GCCIPCA) with an appended term of the mean difference vector is presented. It can be considered that the CCIPCA is only a special case of the GCCIPCA and can extend the scope of the algorithm. Then, the incremental learning of the proposed GCCIPCA is innovated to the existing Bi-Directional PCA (BDPCA), and the called Incremental BDPCA (IBDPCA) is used for the robot perceptual learning and it can be used to incrementally compute the principal components without estimating the similar scatter matrixes in the row and column directions, which can build up the real-time processing speed greatly. Finally, the blocks grasped by the robot are used as the perceptual objects, and the experimental results demonstrate that the proposed algorithm works well, and the convergence rate, the classification recognition rate, the computation time and the required memory are improved significantly. -
GATSOULIS Y and MCGINNITY T M. Intrinsically motivated learning systems based on biologically-inspired novelty detection[J]. Robotics and Autonomous Systems, 2015, 68: 12-20. doi: 10.1016/j.robot.2015.02.006. WENG J Y, MCCLELLAND J, PENTLAND A, et al. Artificial intelligence-autonomous mental development by robots and animals[J]. Science, 2001, 291(5504): 599-600. doi: 10.1126/science.291.5504.599. JI ZP and WENG J Y. A developmental wherewhat network for concurrent and interactive visual attention and recognition[J]. Robotics and Autonomous Systems, 2015, 71: 35-48. doi: 10.1016/j.robot.2015.03.004. SIGAUD O and DRONIOU A. Towards deep developmental learning[J]. IEEE Transactions on Cognitive and Developmental Systems, 2016, 8(2): 99-114. doi: 10.1109/ TAMD.2015.2496248. YAN H, ANG M H and POO A N. A Survey on perception methods for human-robot interaction in social robots[J]. International Journal of Social Robotics, 2014, 6(1): 85-119. doi: 10.1007/s12369-013-0199-6. LI Lingjun, LIU Shigang, PENG Yali, et al. Overview of principal component analysis algorithm[J]. Optik- International Journal for Light and Electron Optics, 2016, 127(9): 3935-3944. doi: 10.1016/j.ijleo.2016.01.033. PARK G and KONNO A. Imitation learning framework based on principal component analysis[J]. Advanced Robotics, 2015, 29(9): 639-656. doi: 10.1080/01691864.2015.1007084. WENG J Y, ZHANG Y L, and HWANG W S. Candid covariance-free incremental principal component analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(8): 1034-1040. doi: 10.1109/TPAMI. 2003.1217609. 謝自強, 葛為民, 王肖鋒, 等. 發(fā)展型機器人實時特征提取方法研究[J]. 機器人, 2017, 39(2): 189-196. doi: 10.13973/ j.cnki.robot.2017.0189. XIE Ziqiang, GE Weimin, WANG Xiaofeng, et al. Real time feature extraction method of developmental robot[J]. Robot, 2017, 39(2): 189-196. doi: 10.13973/j.cnki.robot.2017.0189. BAI H L and CHEN M. CCIPCA-OPCSC: An online method for detecting shared congestion paths[J]. Computer Networks, 2012, 56(1): 399-411. doi: 10.1016/j.comnet.2011.09.016. WANG J. Generalized 2-D principal component analysis by Lp-Norm for image analysis[J]. IEEE Transactions on Cybernetics, 2016, 46(3): 792-803. doi: 10.1109/TCYB.2015. 2416274. 曹明明, 干宗良, 崔子冠, 等. 基于2D-PCA特征描述的非負權重鄰域嵌入人臉超分辨率重建算法[J]. 電子與信息學報, 2015, 37(4): 777-783. doi: 10.11999/JEIT140739. CAO Mingming, GAN Zongliang, CUI Ziguan, et al. Novel neighbor embedding face hallucination based on non-negative weights and 2D-PCA feature[J]. Journal of Electronics Information Technology, 2015, 37(4): 777-783. doi: 10.11999/ JEIT140739. YANG Wankou, SUN Changyin, and RICANEK K. Sequential row-column 2DPCA for face recognition[J]. Neural Computing and Applications, 2012, 21(7): 1729-1735. doi: 10.1007/s00521-011-0676-5. XU F, GU G, KONG X, et al. Object tracking based on two- dimensional PCA[J]. Optical Review, 2016, 23(2): 231-243. doi: 10.1007/s10043-015-0178-2. HUANG J, MA Y, MEI X G, et al. A hybrid spatial-spectral denoising method for infrared hyperspectral images using 2DPCA[J]. Infrared Physics Technology, 2016, 79: 68-73. doi: 10.1016/j.infrared.2016.09.009. PEI J, HUANG Y, HUO W, et al. SAR imagery feature extraction using 2DPCA-based two-dimensional neighborhood virtual points discriminant embedding[J]. IEEE Journal of Selected Topics in Applied Earth Observations Remote Sensing, 2017, 9(6): 2206-2214. doi: 10.1109/JSTARS.2016.2555938. ZUO Wangmeng, ZHANG David, and WANG Kuanquan. Bidirectional PCA with assembled matrix distance metric for image recognition[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B(Cybernetics), 2006, 36(4): 863-872. doi: 10.1109/TSMCB.2006.872274. SUN Yanfeng, CHEN Shangyou, and YIN Baocai. Color face recognition based on quaternion matrix representation[J]. Pattern Recognition Letters, 2011, 32(4): 597-605. doi: 10.1016/j.patrec.2010.11.004. YANG Wankou, SUN Changyin, ZHANG Lei, et al. Laplacian bidirectional PCA for face recognition[J]. Neurocomputing, 2010, 74(1/3): 487-493. doi: 10.1016/j. neucom.2010.08.020. NGUYEN T H B and KIM H. Novel and efficient pedestrian detection using bidirectional PCA[J]. Pattern Recognition, 2013, 46(8): 2220-2227. doi: 10.1016/j.patcog.2013.01.007. REN Chuanxian and DAI Daoqing. Incremental learning of bidirectional principal components for face recognition[J]. Pattern Recognition, 2010, 43(1): 318-330. doi: 10.1016/ j.patcog.2009.05.020. 余映, 王斌, 張立明. 一種面向數(shù)據(jù)學習的快速PCA算法[J]. 模式識別與人工智能, 2009, 22(4): 567-573. doi: 10.16451/ j.cnki.issn1003-6059.2009.04.003. YU Ying, WANG Bin, and ZHANG Liming. A fast data- oriented algorithm for principal component analysis[J]. Pattern Recognition and Artificial Intelligence, 2009, 22(4): 567-573. doi: 10.16451/j.cnki.issn1003-6059.2009.04.003. -
計量
- 文章訪問數(shù): 1329
- HTML全文瀏覽量: 157
- PDF下載量: 226
- 被引次數(shù): 0