An Optimal Allocation Model of Wireless In-band Full-duplex Channel for Multiple Access
Funds:
The National Natural Science Foundation of China (61401234)
-
摘要: 無線帶內(nèi)全雙工(IBFD)具有頻譜效率倍增潛力,應(yīng)用到多用戶接入時,共享信道的優(yōu)化分配將決定系統(tǒng)容量的實際增益。該文分析多用戶爭用沖突的干擾特性及鏈路分配的約束條件,以容量最大為優(yōu)化目標(biāo),針對雙向全雙工(BFD)、全雙工中繼(FDR)以及兩者混合的傳輸模式,建立信道資源分配的問題模型。通過典型站點分布的最優(yōu)解計算,分析IBFD系統(tǒng)相對半雙工(HD)的容量增益。結(jié)果表明,BFD有理想的100%增益,而FDR有較大變化范圍(最低增益25%)。此外,計算發(fā)現(xiàn),站點間傳輸鏈路呈現(xiàn)1維鏈型結(jié)構(gòu)的容量增益明顯優(yōu)于2維平面分布的鏈路結(jié)構(gòu)。
-
關(guān)鍵詞:
- 無線帶內(nèi)全雙工多用戶資源分配 /
- 最優(yōu)化問題模型 /
- 雙向全雙工 /
- 全雙工中繼 /
- 系統(tǒng)容量
Abstract: The potential of wireless In-Band Full-Duplex (IBFD) in doubling spectral efficiency raises a special issue in channel allocation for Multi-user applications in capacity improvement. This paper presents an analysis on mutual interferences, contention conflicting and allocation constraints for different modes of full-duplex transmission. The maximization number of transmission links is chosen as the objective of multi-user system optimization, and a mathematic programming problem of IBFD channel allocation for three transmission modes, including Bidirectional Full-Duplex (BFD), Full-Duplex Relay (FDR) and the mixed of two is proposed. The exact optimal solutions are researched for two kinds of typical topology to find the capacity improvement of IBFD to Half-Duplex (HD). The results show that BFD multi-user system has an ideal capacity gain 100% in relative to HD, while FDR reveals a wide range of gain with 25% in the lowest. In addition, the gain of one dimensional chain of stations is found significantly superior to that of two-dimensional distribution. -
吳皓威, 鄒玉濤, 孫晨, 等. 一種應(yīng)用于WLAN的混合雙工MAC協(xié)議[J]. 電子與信息學(xué)報, 2017, 39(4): 840-846. doi: 10.11999/JEIT160539. ZHANG Z, LONG K, VASILAKOS A V, et al. Full-duplex wireless communications: challenges, solutions, and future research directions[J]. Proceedings of the IEEE, 2016, 104(7): 1369-1409. doi: 10.1109/JPROC.2015.2497203. WU Haowei, ZOU Yutao, SUN Chen, et al. A hybrid-duplex MAC protocol for WLAN[J]. Journal of Electronics Information Technology, 2017, 39(4): 840-846. doi: 10.11999/ JEIT160539. MAHMOOD N H, ANSARI I S, BERARDINELLI G, et al. Analysing self interference cancellation in full duplex radios[C]. Wireless Communications and Networking Conference(WCNC), Doha, 2016: 1-6. doi: 10.1109/WCNC. 2016.7564878. MASMOUDI A and LE-NGOC T. Self-interference cancellation limits in full-duplex communication systems[C]. Global Communications Conference (GLOBECOM), Washington, 2016: 1-6. doi: 10.1109/GLOCOM.2016. 7842258. CHOI J I, JAIN M, SRINIVASAN K, et al. Achieving single channel, full duplex wireless communication[C]. Proceedings of the Sixteenth Annual International Conference on Mobile Computing and Networking, Chicago, 2010: 1-12. doi: 10.1145/1859995.1859997. KIM D, LEE H, and HONG D. A survey of in-band full-duplex transmission: From the perspective of PHY and MAC layers[J]. IEEE Communications Surveys Tutorials, 2015, 17(4): 2017-2046. doi: 10.1109/COMST.2015.2403614. THILINA K M, TABASSUM H, HOSSAIN E, et al. Medium access control design for full duplex wireless systems: challenges and approaches[J]. IEEE Communications Magazine, 2015, 53(5): 112-120. doi: 10.1109/MCOM.2015. 7105649. SABHARWAL A, SCHNITER P, GUO D, et al. In-band full-duplex wireless: Challenges and opportunities[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(9): 1637-1652. doi: 10.1109/JSAC.2014.2330193. QIAO D. Effective capacity of buffer-aided full-duplex relay systems with selection relaying[J]. IEEE Transactions on Communications, 2016, 64(1): 117-129. doi: 10.1109/ TCOMM.2015.2497688. WANG Y, XU Y, LI N, et al. Relay selection of full-duplex decode-and-forward relaying over Nakagami-m fading channels[J]. IET Communications, 2016, 10(2): 170-179. doi: 10.1049/iet-com.2015.0524. JU H, KIM D, POOR H V, et al. Bi-directional beamforming and its capacity scaling in pairwise two-way communications [J]. IEEE Transactions on Wireless Communications, 2012, 11(1): 346-357. doi: 10.1109/TWC.2011.111611.110970. KIM D, PARK S, JU H, et al. Transmission capacity of full- duplex-based two-way ad hoc networks with ARQ protocol[J]. IEEE Transactions on Vehicular Technology, 2014, 63(7): 3167-3183. doi: 10.1109/TVT.2014.2302013. JU H, OH E, and HONG D. Catching resource-devouring worms in next generation wireless relay systems: two-way relay and full-duplex relay[J]. IEEE Communications Magazine, 2009, 47(9): 58-65. doi: 10.1109/MCOM.2009. 5277456. ALVES H, FRAIDENRAICH G, SOUZA R D, et al. Performance analysis of full duplex and selective and incremental half duplex relaying schemes[C]. 2012 IEEE Wireless Communications and Networking Conference (WCNC), Paris, 2012, 771-775. doi: 10.1109/WCNC.2012. 6214475. LIU G, YU F R, JI H, et al. In-band full-duplex relaying: A survey, research issues and challenge[J]. IEEE Communications Surveys Tutorials, 2015, 17(2): 500-524. doi: 10.1109/COMST.2015.2394324. BAI J and SABHARWAL A. Distributed full-duplex via wireless side-channels: bounds and protocols[J]. IEEE Transactions on Wireless Communications, 2013, 12(8): 4162-4173. doi: 10.1109/TWC.2013.071913.122015. DAS P and SETH D D. Performance analysis of routing protocols for ad-hoc network in a fading environment[C]. IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), Chennai, 2016: 1-5. doi: 10.1109/ICCIC.2016.7919540. -
計量
- 文章訪問數(shù): 1550
- HTML全文瀏覽量: 213
- PDF下載量: 263
- 被引次數(shù): 0