一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

一種魯棒的基于集成學(xué)習(xí)的核相關(guān)紅外目標(biāo)跟蹤算法

謝濤 吳恩斯

謝濤, 吳恩斯. 一種魯棒的基于集成學(xué)習(xí)的核相關(guān)紅外目標(biāo)跟蹤算法[J]. 電子與信息學(xué)報, 2018, 40(3): 602-609. doi: 10.11999/JEIT170527
引用本文: 謝濤, 吳恩斯. 一種魯棒的基于集成學(xué)習(xí)的核相關(guān)紅外目標(biāo)跟蹤算法[J]. 電子與信息學(xué)報, 2018, 40(3): 602-609. doi: 10.11999/JEIT170527
XIE Tao, WU Ensi. A Robust Kernelized Correlation Tracking Algorithm for Infrared Targets Based on Ensemble Learning[J]. Journal of Electronics & Information Technology, 2018, 40(3): 602-609. doi: 10.11999/JEIT170527
Citation: XIE Tao, WU Ensi. A Robust Kernelized Correlation Tracking Algorithm for Infrared Targets Based on Ensemble Learning[J]. Journal of Electronics & Information Technology, 2018, 40(3): 602-609. doi: 10.11999/JEIT170527

一種魯棒的基于集成學(xué)習(xí)的核相關(guān)紅外目標(biāo)跟蹤算法

doi: 10.11999/JEIT170527
基金項目: 

教育部-中國移動科研基金(MCM20160405)

A Robust Kernelized Correlation Tracking Algorithm for Infrared Targets Based on Ensemble Learning

Funds: 

The Ministry of Education-China Mobile Research Fund Project (MCM20160405)

  • 摘要: 在紅外目標(biāo)跟蹤中,由于目標(biāo)所處的背景信息復(fù)雜多變和目標(biāo)外觀的顯著變化,單一的分類器不足以擬合多模態(tài)的數(shù)據(jù)。該文結(jié)合核相關(guān)濾波器(KCF)將多個核相關(guān)分類器通過集成學(xué)習(xí)整合到一個框架中。利用KCF分類器具有解析解的特點平衡跟蹤魯棒性與實時性之間的矛盾,從而解決單個分類器無法處理復(fù)雜背景與顯著的外觀變化問題,并顯著提升目標(biāo)跟蹤的性能與穩(wěn)定性。為了驗證算法的有效性,該文利用兩個核相關(guān)跟蹤器聯(lián)合學(xué)習(xí)出1個強分類器。大量的定性定量實驗表明所提的算法的跟蹤性能超過傳統(tǒng)的KCF算法,且跟蹤速度也超過大多數(shù)比較算法。
  • 李少毅, 梁爽, 張凱, 等. 基于紅外壓縮成像的點目標(biāo)跟蹤方法研究[J]. 電子與信息學(xué)報, 2015, 37(7): 1639-1645. doi: 10.11999/JEIT141324.
    LI Shaoyi, LIANG Shuang, ZHANG Kai, et al. Research of infrared compressive imaging based point target tracking method[J]. Journal of Electronics Information Technology, 2015, 37(7): 1639-1645. doi: 10.11999/JEIT 141324.
    袁廣林, 薛模根. 基于稀疏稠密結(jié)構(gòu)表示與在線魯棒字典學(xué)習(xí)的視覺跟蹤[J]. 電子與信息學(xué)報, 2015, 2015, 37(3): 536-542. doi: 10.11999/JEIT140507.
    YUAN Guanglin and XUE Mogen. Visual tracking based on sparse dense structure representation and online robust dictionary learning[J]. Journal of Electronics Information Technology, 2015, 37(3): 536-542. doi: 10.11999/JEIT140507.
    羅會蘭, 鐘寶康, 孔繁勝. 帶權(quán)分塊壓縮感知的預(yù)測目標(biāo)跟蹤算法[J]. 電子與信息學(xué)報, 2015, 37(5): 1160-1166. doi: 10.11999/JEIT140997.
    LUO Huilan, ZHONG Baokang, and KONG Fansheng. Tracking using weighted block compressed sensing and location prediction[J]. Journal of Electronics Information Technology, 2015, 37(5): 1160-1166. doi: 10.11999/JEIT 140997.
    ROSS D A, LIM J, LIN R S, et al. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1): 125-141. doi: 10.1007/s11263-007-0075 -7.
    ZHONG W, LU H, and YANG M H. Robust object tracking via sparse collaborative appearance model[J]. IEEE Transactions on Image Processing, 2014, 23(5): 2356-2368. doi: 10.1109/TIP.2014.2313227.
    薛一哲, 王拓. 基于代價敏感 Adaboost 目標(biāo)跟蹤[J]. 中國圖像圖形學(xué)報, 2016, 21(5): 544-555.
    XUE Yizhe and WANG Tuo. Object tracking based on cost-sensitive Adaboost algorithm[J]. Chinese Journal of Image and Graphics, 2016, 21(5): 544-555.
    ZHANG K and SONG H. Real-time visual tracking via online weighted multiple instance learning[J]. Pattern Recognition, 2013, 46(1): 397-411. doi: 10.1016/j.patcog.2012.07.013.
    BABENKO B, YANG M H, and BELONGIE S. Robust object tracking with online multiple instance learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632. doi: 10.1109/TPAMI. 2010.226.
    HU J, LU J, and TAN Y P. Deep metric learning for visual tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(11): 2056-2068. doi: 10.1109/ TCSVT.2015.2477936.
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. Imagenet classification with deep convolutional neural networks[C]. Proceedings of the Advances in Neural Information Processing Systems, Nevada, USA, 2012: 1097-1105. doi: 10.1145/3065386.
    TANG Z, WANG S, HUO J, et al. Bayesian framework with non-local and low-rank constraint for image reconstruction [C]. Proceedings of the Journal of Physics, 2017, 787: 012008. doi: 10.1088/1742-6596/787/1/012008.
    HENRIQUES J F, CASEIRO R, MARTINS P, et al. High- speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596. doi: 10.1109/TPAMI.2014.2345390.
    LIU T, WANG G, and YANG Q. Real-time part-based visual tracking via adaptive correlation filters[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 4902-4912. doi: 10.1109/ CVPR.2015.7299124.
    MATTHEWS L, ISHIKAWA T, and BAKER S. The template update problem[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(6): 810-815. doi: 10.1109/TPAMI.2004.16.
    侯志強, 黃安奇, 余旺盛, 等. 基于局部分塊和模型更新的視覺跟蹤算法[J]. 電子與信息學(xué)報, 2015, 37(6): 1357-1364. doi: 10.11999/JEIT141134.
    HOU Zhiqiang, HUANG Anqi, YU Wangsheng, et al. Visual object tracking method based on local patch model and model update[J]. Journal of Electronics Information Technology, 2015, 37(6): 1357-1364. doi: 10.11999/JEIT 141134.
    薛模根, 朱虹, 袁廣林. 基于在線判別式字典學(xué)習(xí)的魯棒視覺跟蹤[J]. 電子與信息學(xué)報, 2015, 37(7): 1654-1659. doi: 10.11999/JEIT141325.
    XUE Mogen, ZHU Hong, and YUAN Guanglin. Robust visual tracking based on online discrimination dictionary learning[J]. Journal of Electronics Information Technology, 2015, 37(7): 1654-1659. doi: 10.11999/JEIT 141325.
    蘇巧平, 劉原, 卜英喬, 等. 基于稀疏表達的多示例學(xué)習(xí)目標(biāo)追蹤算法[J]. 計算機工程, 2013, 39(3): 213-217.
    SHU Qiaoping, LIU Yuan, BU Yingqiao, et al. Multi-example learning target tracking algorithm based on sparse expression [J]. Computer Engineering, 2013, 39(3): 213-217.
    VIOLA P, JONES M J, and SNOW D. Detecting pedestrians using patterns of motion and appearance[J]. International Journal of Computer Vision, 2005, 63(2): 153-161. doi: 10.1007/s11263-005-6644-8.
    KALAL Z, MIKOLAJCZYK K, and MATAS J. Tracking- learning-detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409-1422. doi: 10.1109/TPAMI.2011.239
    ZHANG K, ZHANG L, LIU Q, et al. Fast visual tracking via dense spatio-temporal context learning[C]. Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 2014: 127-141. doi: 10.1007/978-3-319-10602- 1_9.
  • 加載中
計量
  • 文章訪問數(shù):  1149
  • HTML全文瀏覽量:  219
  • PDF下載量:  273
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-05-31
  • 修回日期:  2017-12-05
  • 刊出日期:  2018-03-19

目錄

    /

    返回文章
    返回