基于凸優(yōu)化的稀疏陣列方向調制信號綜合算法研究
doi: 10.11999/JEIT170391
基金項目:
國家自然科學基金(61302102, 61271232),江蘇省屬高校自然科學研究面上項目(13KJB510023),國家博士后自然科學基金(2013M531390)
Synthesis of a Sparse Array for Directional Modulation Signal Based on Convex Optimization
Funds:
The National Natural Science Foundation of China (61302102, 61271232), The Scientific Research Foundation of the Higher Education Institutions of Jiangsu Province, China (13KJB510023), The National Science Foundation for Post- doctoral Scientists of China (2013M531390)
-
摘要: 方向調制技術利用多天線發(fā)射陣列的空間調制能力在天線端綜合出具有方向特性的數(shù)字調制信號是近年來物理層安全通信領域研究的熱點之一。該文提出一種基于凸優(yōu)化的稀疏陣列方向調制信號綜合算法。首先算法建立以陣列稀疏為目標函數(shù)以及方向調制信號不同性能要求為約束的非凸優(yōu)化問題;然后針對這個非凸問題,給出了兩種不同的求解方案:一種基于迭代加權l(xiāng)1算法,但稀疏算法得到的結果可能存在陣元間距小于半個波長的情況;另一種基于混合整數(shù)規(guī)劃,確保稀疏算法得到的陣元間距至少為半個波長;最后在混合整數(shù)規(guī)劃算法的基礎上建立以方向調制信號功率利用率為目標的優(yōu)化問題,優(yōu)化稀疏陣列方向調制信號發(fā)射機的功率利用率。仿真結果表明,相比于與現(xiàn)有的基于均勻等間距直線陣列的方向調制信號綜合算法,所提算法在方向調制信號的安全性能、方向調制信號發(fā)射機的功率利用率以及陣列的稀疏程度之間具有良好的設計靈活度。Abstract: The design of Directional Modulation (DM) signal by a phased array is one of the important topics in the field of physical layer security communication. In this paper, a synthesis method for synthesis of a sparse array is proposed based on convex optimization. Firstly, a nonconvex optimization problem is formulated associated with some basic metrics of DM signal. Secondly, two different solutions are presented: one is based on Iterative Reweighted l1-norm (IRL) resulting in a superdirective array with the interelement spacing less than half-wavelength; the other is based on Mixed Integer Programming (MIP) resulting in a nonsuperdirective array with the interelement spacing more than half-wavelength. Finally, the power efficiency of DM transmitter is optimized based on MIP algorithm. Simulation results show that the proposed synthesis method provides greater flexibility of controlling the security performance, power efficiency and sparse level, while at the same time the number of excitations is less than the uniformly spaced linear array in the benchmark problems.
-
GE X H, ZI R, WANG H C, et al. Multi-user massive MIMO communication systems based on irregular antenna arrays[J]. IEEE Transactions on Wireless Communications, 2016, 15(8): 5287-5301. doi: 10.1109/TWC.2016.2555911. GE X H, TU S, MAO G Q, et al. 5G ultra-dense cellular networks[J]. IEEE Wireless Communications, 2016, 23(1): 72-79. doi: 10.1109/MWC.2016.7422408. ZHANG J, GE X H, LI Q, et al. 5G millimeter-wave antenna array: Design and challenges[J]. IEEE Wireless Communications, 2017, 24(2): 106-112. doi: 10.1109/MWC. 2016.1400374RP. BABAKHANI A, RUTLEDGE D B, and HAJIMIRI A. Transmitter architectures based on near-field direct antenna modulation[J]. IEEE Journal of Circuits Solid-State Circuits, 2008, 12(43): 2674-2692. doi: 10.1109/JSSC.2008.2004864. HONG T, SONG M, and LIU Y. Dual-beam directional modulation technique for physical-layer secure communication[J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10: 1417-1420. doi: 10.1109/LAWP.2011. 2178384. HONG T, SONG M, and LIU Y. RF directional modulation technique using a switched antenna array for physical layer secure communication[J]. Progress in Electromagnetics Research-Pier, 2011, 116: 363-379. doi: 10.2528/PIER 11031605. DALY M P and BERNHARD J T. Beamsteering in pattern reconfigurable arrays using directional modulation[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(7): 2259-2265. doi: 10.1109/TAP.2010.2046854. DING Y and FUSCO V. A synthesis-free directional modulation transmitter using retrodirective array[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 428-441. doi: 10.1109/JSTSP.2016.2605066. DING Y and FUSCO V. Directional modulation-enhanced retrodirective array[J]. Electronics Letters, 2015, 51(1): 118-120. doi: 10.1049/el.2014.3188. DALY M P and BERNHARD J T. Directional modulation technique for phased arrays[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(9): 2633-2640. doi: 10.1109/TAP.2009.2027047. DING Y and FUSCO V. Establish metrics for assessing the performance of directional modulation systems[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(5): 2745-2755. doi: 10.1109/TAP.2014.2307318. TENNANT A, MUFTI S, and PARRON J. Hardware implementation of directional modulation system[C]. 2016 Loughborough Antennas Propagation Conference (LAPC). Loughborough, 2016: 1-4. doi: 10.1109/LAPC.2016.7807475. HU J S, SHU F, and Li J. Robust synthesis method for secure directional modulation with imperfect direction angle[J]. IEEE Communications Letters, 2016, 20(6): 1084-1087. doi: 10.1109/LCOMM.2016.2550022. HE Y D, LIU Y J, Du N T, et al. Directional modulation for QAM signals with PAPR reduction[C]. 2016 46th European Microwave Conference (EuMC). Bongrain, 2016: 1307-1310. doi: 10.1109/EuMC.2016.7824591. SHI H Z and TENNANT A. Simultaneous, multichannel, spatially directive data transmission using direct antenna modulation[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(1): 403-410. doi: 10.1109/TAP.2013. 2287284 . DING Y and FUSCO V. Orthogonal vector approach for synthesis of multi-beam directional modulation transmitters [J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 1330-1333. doi: ?10.1109/LAWP.2015.2404818. DING Y and FUSCO V. A vector approach for the analysis and synthesis of directional modulation transmitters[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(1): 361-370. doi: 10.1109/TAP.2013.2287001. VALLIAPPAN N, LOZANO A, and HEATH R W. Antenna subset modulation for secure millimeter-wave wireless communication[J]. IEEE Transactions on Communications, 2013, 61(8): 3231-3245. doi:?10.1109/TCOMM.2013.061013. 120459. DING Y and FUSCO V. Directional modulation transmitter radiation pattern considerations[J]. IET Microwaves, Antennas and Propagation, 2013, 7(15): 1201-1206. doi: 10.1049/iet-map.2013.0282. DING Y and FUSCO V. Constraining directional modulation transmitter radiation patterns[J]. IET Microwaves, Antennas and Propagation, 2014, 8(15): 1408-1415. doi: 10.1049/iet- map.2014.0042. DING Y and FUSCO V. MIMO-inspired synthesis of directional modulation systems[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 580-584. doi:?10.1109 /LAWP.2015.2459752. KALANTARI A, SOLTANALIAN M, MALEKI S, et al. Directional modulation via symbol-level precoding: A way to enhance security[J]. IEEE Journal of Selected Topics in Signal Processing, 2016, 10(8): 1478-1493. doi:?10.1109/ JSTSP.2016.2600521. HU J S, YAN S H, SHU F, et al. Artificial-noise-aided secure transmission with directional modulation based on random frequency diverse arrays[J]. IEEE Access, 2017, 5: 1658-1667. doi: ?10.1109/ACCESS.2017.2653182. FUCHS B. Synthesis of sparse arrays with focused or shaped beam pattern via sequential convex optimizations[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(7): 3499-3503. doi: ?10.1109/TAP.2012.2196951. CANDES E J, WAKIN M, and BOYD S. Enhancing sparsity by reweighted minimization[J]. Journal of Fourier Analysis and Applications, 2008, 14(5): 877-905. doi: 10.1007/s00041-008-9045-x. -
計量
- 文章訪問數(shù): 1240
- HTML全文瀏覽量: 184
- PDF下載量: 300
- 被引次數(shù): 0