融合暗原色先驗和稀疏表示的水下圖像復原
doi: 10.11999/JEIT170381
-
1.
(河海大學計算機與信息學院 南京 211100)
-
2.
(南京師范大學物理科學與技術(shù)學院 南京 210000)
國家自然科學基金面上項目(61374019),國家自然科學基金青年基金(61603124),教育部中央高?;究蒲袠I(yè)務費專項資金(2015B19014), 江蘇省333高層次人才培養(yǎng)工程, 江蘇省 六大人才高峰高層次人才項目(XYDXX-007)
Combination of Dark-channel Prior with Sparse Representation for Underwater Image Restoration
-
1.
(College of Computer and Information, Hohai University, Nanjing 211100, China)
-
2.
(School of Physics and Technology, Nanjing Normal University, Nanjing 210000, China)
The National Natural Science Foundation of China (61374019, 61603124), The Fundamental Research Funds for the Central Universities (2015B19014), 333 High-Level Talent Training Program of Jiangsu Province, Six Talents Peak Project of Jiangsu Province (XYDXX-007)
-
摘要: 由于水下圖像成像過程中受光的散射、噪聲干擾等因素影響,致使圖像質(zhì)量嚴重退化。為了去除模糊和抑制噪聲,改善水下圖像質(zhì)量,該文提出一種融合暗原色先驗和稀疏表示的水下圖像復原新方法。該方法首先利用暗原色先驗理論計算水下圖像的暗原色,然后基于稀疏表示理論對暗原色進行去噪和優(yōu)化,基于改進后的暗原色計算水體透射率和光照強度以計算最終復原結(jié)果,可以同時達到去模糊和去噪的良好效果。實驗結(jié)果表明,提出的方法有效提高了圖像的平均梯度和信息熵等圖像像素,從而改善了圖像的質(zhì)量。Abstract: Due to the influences of scattering of the light and interference of the noise, underwater image quality is always degraded severely. In order to remove the blur and suppress the noise, and improve the quality of underwater image, a novel underwater image restoration method based on the combination of dark-channel prior with sparse representation is proposed. This method adopts the dark-channel prior theory to calculate the dark-channel image at first, and then uses sparse representation to denoise and optimize the dark-channel image. Based on the improved dark-channel image, the more precise water transmissivity and light intensity can be achieved to compute the final restoration result, effectively eliminating the image blur as well as noise. The experimental results show that the proposed method can effectively improve the image factors, such as average gradient and entropy, so as to compensate the degraded image.
-
Key words:
- Underwater image restoration /
- Dark-channel prior /
- Sparse representation
-
YANG Aiping, ZHENG Jia, WANG Jian, et al. Underwater image restoration based on color cast removal and dark channel prior[J]. Journal of Electronics Information Technology, 2015, 37(11): 2541-2547. doi: 10.11999/JEIT 150483. 楊愛萍, 鄭佳, 王建, 等. 基于顏色失真去除與暗通道先驗的水下圖像復原[J]. 電子與信息學報, 2015, 37(11): 2541-2547. doi: 10.11999/JEIT150483. PADMAVATHI G, SUBASHINI P, MUTHU KUMAR M, et al. Comparison of filters used for underwater image pre-processing[J]. International Journal of Computer Science Network Security, 2010, 10(1): 58-65. 郭相鳳, 賈建芳, 楊瑞峰, 等. 基于水下圖像光學成像模型的清晰化算法[J]. 計算機應用, 2012, 32(10): 2836-2839. GUO Xiangfeng, JIA Jianfang, YANG Ruifeng, et al. Visibility enhancing algorithm based on optical imaging model for underwater images[J]. Journal of Computer Applications, 2012, 32(10): 2836-2839. doi: 10.3724/SP.J. 1087.2012.02836. HE Kaiming, SUN Jian, and TANG Xiaoou. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353. 曹美, 盛惠興, 李慶武, 等. 基于暗原色先驗模型的水下彩色圖像增強算法[J]. 量子電子學報, 2016, 33(2): 140-147. CAO Mei, SHENG Huixing, LI Qingwu, CHENG Yaling, et al. Underwater color image enhancement algorithm based on prior dark-channel modelJ]. Chinese Journal of Quantum Electronics, 2016, 33(2): 140-147. ELAD Michael and AHARON Michal. Image denosing via sparse and redundant representations over learned dictionaries[J]. IEEE Transactions on Image Processing, 2006, 15(12): 3736-3745. WANG Xin, SHEN Siqiu, NING Chen, et al. A sparse representation-based method for infrared dim target detection under seasky background[J]. Infrared Physics Technology, 2015, 71: 347-355. doi: 10.1016/j.infrared.2015. 05.014. GUHA T and WARD R K. Learning sparse representations for human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(8): 1576-1588. doi: 10.1109/TPAMI.2011.253. WANG Xin, SHEN Siqiu, NING Chen, et al. Multi-class remote sensing object recognition based on discriminative sparse representation[J]. Applied Optics, 2016, 55(6): 1381-1394. doi: 10.1364/AO.55.001381. 李建. 水下圖像后向散射噪聲的去噪問題研究[D]. [碩士論文] 中國海洋大學, 2009. 戴昊. 基于小波的水下圖像去噪研究[D]. [碩士論文], 中國海洋大學, 2008. HE Kaiming, SUN Jian, and TANG Xiaoou. Guided image filtering[C]. European Conference on Computer Vision, Heraklion, Crete, Greece, 2010: 1-14. doi: 10.1007/978-3- 642-15549-9_1. TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666. doi: 10.1109/TIT.2007.909108. AHARON M, ELAD M, and BRUCKSTEIN A. K-svd: An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Image Processing, 2006, 54(11): 4311-4322. ZHANG Jian, ZHAO Debin, and GAO Wen. Group-based sparse representation for image restoration[J]. IEEE Transactions on Image Processing, 2014, 23(8): 3336-3351. RUDIN L I, OSHER S, and FATEMI E. Nonlinear total variation based noise removal algorithms[C]. Eleventh International Conference of the Center for Nonlinear Studies on Experimental Mathematics: Computational Issues in Nonlinear Science: Computational Issues in Nonlinear Science, Los Alamos, New Mexico, USA, 1992: 259-268. doi: 10.1016/0167-2789(92)90242-F. WANG Jinbao, HE Ning, ZHANG Lulu, et al. Single image dehazing with a physical model and dark channel prior[J]. Neurocomputing, 2015, 149: 718-728. doi: 10.1016/j.neucom. 2014.08.005. WANG Xin and TANG Zhenmin. Automatic image de-weathering using physical model and maximum entropy[C]. IEEE Conference on Cybernetics Intelligent System, Chengdu, China, 2008: 996-1001. ZHANG Lin, ZHANG Lei, MOU Xuanqin, et al. FSIM: A feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(8): 2378-2386. -
計量
- 文章訪問數(shù): 1500
- HTML全文瀏覽量: 163
- PDF下載量: 251
- 被引次數(shù): 0