基于記憶分子動理論優(yōu)化算法的多目標截面投影Otsu圖像分割
doi: 10.11999/JEIT170301
-
1.
(湖南大學電氣與信息工程學院 長沙 410082) ②(湘潭大學信息工程學院 湘潭 411105)
國家自然科學基金(61573299),湖南省自然科學基金(2016JJ3125),湖南省教育廳科學研究項目(15C1327)
Multi-objective Cross Section Projection Otsu's Method Based on Memory Knetic-molecular Theory Optimization Algorithm
-
1.
(College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)
-
2.
(College of Information Engineering, Xiangtan University, Xiangtan 411105, China)
The National Natural Science Foundation of China (61573299), The Natural Science Foundation of Hunan Province (2016JJ3125), The Foundation of Hunan Educational Committee (15C1327)
-
摘要: 傳統(tǒng)截面投影Otsu法后處理過程中的閾值Q為預先設定的常量,對含噪程度不同的圖像普適性較差。該文提出一種基于記憶分子動理論優(yōu)化算法的多目標截面投影Otsu法。該方法將閾值Q作為變量,結合分割閾值T,基于最大類間方差和最大峰值信噪比準則建立多目標圖像分割模型,以兼顧圖像分割的準確性和抗噪性;為免閾值增加而影響算法效率,將人工記憶原理引入分子動理論優(yōu)化算法,設計了一種基于記憶分子動理論優(yōu)化算法的多目標圖像分割模型求解方法。實驗表明:該方法分割準確、抗噪性強、魯棒性好,對含不同噪聲的圖像更具普適性。
-
關鍵詞:
- 圖像分割 /
- 最大類間方差 /
- 多目標優(yōu)化 /
- 分子動理論優(yōu)化算法 /
- 記憶原理
Abstract: The threshold value of Q in the post process of traditional cross section projection Otsus method is a constant, which is not universal applicability for images with different noises. To solve this problem, this paper proposes a multi-objective cross section projection Otsu's method based on memory knetic-molecular theory ptimization algorithm. Based on the maximum between-class variance criterion and the maximum Peak Signal to Noise Ratio (PSNR) criterion, a multi-objective image segmentation model is established to take into account the segmentation accuracy and anti-noise capability for image segmentation by combining threshold Q with segmentation threshold T. In order to improve the efficiency of the algorithm, a memory knetic-molecular theory optimization algorithm is proposed for the multi-objective cross section projection Otsu's method by introducing the artificial memory principles into knetic-molecular theory optimization algorithm. The experimental results show that this method has significant advantages in segmentation accuracy, anti-noise capability and robustness, and is more universal applicability for images with different noises. -
YANG Xi, GAO Xinbo, TAO Dacheng, et al. An efficient MRF embedded level set method for image segmentation[J]. IEEE Transactions on Image Processing, 2015, 24(1): 9-21. doi: 10.1109/TIP.2014.2372615. SOULEYMANE B A, GAO Xinbo, DOMINIQUE G, et al. Architecture-driven level set optimization: from clustering to subpixel image segmentation[J]. IEEE Transactions on Cybernetics, 2016, 46(12): 3181-3194. doi: 10.1109/TCYB. 2015.2499206. SHANG Ronghua, TIAN Pingping, JIAO Licheng, et al. A spatial fuzzy clustering algorithm with kernel metric based on immune clone for SAR image segmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(4): 1640-1652. doi: 10.1109/JSTARS.2016. 2516014. CARLOS F M C, ALFONSO M U, and GERARDO S. Unsupervised morphological segmentation based on affixality measurements[J]. Pattern Recognition Letters, 2016, 84(1): 127-133. doi: 10.1016/j.patrec.2016.09.001 YANG Jian, HE Yuhong, and JOHN C. Region merging using local spectral angle thresholds: A more accurate method for hybrid segmentation of remote sensing images[J]. Remote Sensing of Environment, 2017, 190(1): 137-148. doi: 10.1016/j.rse.2016.12.011. SALIMA O and ABDELMALIK T A. Social spiders optimization and flower pollination algorithm for multilevel image thresholding: A performance study[J]. Expert Systems with Applications, 2016, 55(C): 566-584. doi: 10.1016/j.eswa. 2016.02.024. 申鉉京, 劉翔, 陳海鵬. 基于多閾值Otsu準則的閾值分割快速計算[J]. 電子與信息學報, 2017, 39(1): 144-149. doi: 10.11999/JEIT160248. SHEN Xuanjing, LIU Xiang, and CHEN Haipeng. Fast computation of threshold based on multi-threshold Otsu criterion[J]. Journal of Electronics Information Technology, 2017, 39(1): 144-149. doi: 10.11999/JEIT160248. 劉健莊, 栗文清. 灰度圖像的二維Otsu 自動閾值分割法[J]. 自動化學報, 1993, 19(1): 101-105. doi: 10.16383/j.aas.1993. 01.015. LIU Jianzhuang and LI Wenqing. Automatic thresholding of gray-level pictures using two-dimension Otsu method[J]. Acta Automatica Sinica, 1993, 19(1): 101-105. doi: 10.16383/j.aas. 1993.01.015. 景曉軍, 李劍峰, 劉郁林. 一種基于三維最大類間方差的圖像分割算法[J]. 電子學報, 2003, 31(9): 1281-1285. do: 10.3321/ j.issn:0372-2112.2003.09.001. JING Xiaojun, LI Jianfeng, and LIU Yulin. Image segmentation based on 3-D maximum between-cluster variance[J]. Acta Electronica Sinica, 2003, 31(9): 1281-1285. doi: 10.3321/j.issn:0372-2112.2003.09.001. 范九倫, 趙鳳, 張雪峰. 三維Otsu 閾值分割方法的遞推算法[J]. 電子學報, 2007, 35(7): 1398-1402. doi: 10.3321/j.issn: 0372-2112.2007.07.034. FAN Jiulun, ZHAO Feng, and ZHANG Xuefeng. Recursive algorithm for three-dimensional Otsus thresholding segmentation method[J]. Acta Electronica Sinica, 2007, 35(7): 1398-1402. doi: 10.3321/j.issn:0372-2112.2007.07.034. STHITPATTANAPONGSA P and SRINARK T. An equivalent 3D Otsus thresholding method [C]. The 5th Pacific Rim Symposium on Image and Video Technology. Gwangju, South Korea, 2011, 358-369. doi: 10.1007/978-3- 642-25367-6_32. 范朝冬, 歐陽紅林, 肖樂意. 基于空間截面投影的Otsu 圖像分割算法[J]. 通信學報, 2014, 35(5): 70-78. doi: 10.3969/ j.issn.1000-436x.2014.05.010. FAN Chaodong, OUYANG Honglin, and XIAO Leyi. Otsu thresholding method based on projection of cross section for image segmentation[J]. Journal on Communications, 2014, 35(5): 70-78. doi: 10.3969/j.issn.1000-436x.2014.05.010. FAN Chaodong, OUYANG Honglin, ZHANG Yingjie, et al. Optimal multilevel thresholding using molecular kinetic theory optimization algorithm[J]. Applied Mathematics and Computation, 2014, 239(15): 391-408. doi: 10.1016/j.amc. 2014.04.103. 范朝冬, 張英杰, 歐陽紅林, 等. 基于改進斜分Otsu 法的回轉窯火焰圖像分割[J]. 自動化學報, 2014, 40(11): 2480-2489. doi: 10.3724/SP.J.1004.2014.02480. FAN Chaodong, ZHANG Yingjie, OUYANG Honglin, et al. Improved Otsu method based on histogram oblique segmentation for segmentation of rotary kiln flame image[J]. Acta Automatica Sinica, 2014, 40(11): 2480-2489. doi: 10.3724/SP.J.1004.2014.02480. FAN Chaodong, REN Ke, ZHANG Yingjie, et al. Optimal multilevel thresholding based on molecular kinetic theory optimization algorithm and line intercept histogram[J]. Journal of Central South University, 2016, 23(4): 880-889. doi: 10.1007/s11771-016-3135-8. 范朝冬, 章兢, 易靈芝. M-精英協(xié)同進化分子動理論優(yōu)化算法[J]. 通信學報, 2015, 36(7): 144-152. doi: 10.11959/j.issn. 1000-436x.2015200. FAN Chaodong, ZHANG Jing, and YI Lingzhi. M-elite coevolutionary kinetic-molecular theory optimization algorithm[J]. Journal on Communications, 2015, 36(7): 144-152. doi: 10.11959/j.issn.1000-436x.2015200. 黃光球, 李濤, 陸秋琴. 人工記憶優(yōu)化算法[J]. 系統(tǒng)工程理論與實踐, 2014, 34(11): 2900-2912. doi: 10.12011/1000- 6788(2014)11-2900. HUANG Guangqiu, LI Tao, and LU Qiuqin. Artificial memory-based optimization [J]. Systems Engineering-Theory Practice, 2014, 34(11): 2900-2912. doi: 10.12011/1000- 6788(2014)11-2900. 李牧東, 趙輝, 翁興偉, 等. 基于最優(yōu)高斯隨機游走和個體篩選策略的差分進化算法[J]. 控制與決策, 2016, 31(8): 1379-1386. doi: 10.13195/j.kzyjc.2015.0779 LI Mudong, ZHAO Hui, WENG Xingwei, et al. Differential evolution based on optimal Gaussian random walk and individual selection strategies[J]. Control and Decision, 2016, 31(8): 1379-1386. doi: 10.13195/j.kzyjc.2015.0779. 張新明, 鄭延斌, 張慧云. 應用混沌多目標規(guī)劃理論融合的圖像分割[J]. 小型微型計算機系統(tǒng), 2010, 31(7): 1416-1420. ZHANG Xinming, ZHENG Yanbin, and ZHANG Huiyun. Image segmentation based on combining chaos and multiobjective programming theory[J]. Journal of Chinese Computer Systems, 2010, 31(7): 1416-1420. 何林波, 蔣定德, 仲維佳. 一種基于能效與頻效的路由優(yōu)化算法[J]. 電子學報, 2016, 44(10): 2314-2322. doi: 10.3969/j.issn. 0372-2112.2016.10.005. HE Linbo, JIANG Dingde, and ZHONG Weijia. An engergy efficiency and frequency efficiency based routing optimization algorithm[J]. Acta Electronica Sinica, 2016, 44(10): 2314-2322. doi: 10.3969/j.issn.0372-2112.2016.10.005. EESA A S, ORMAN Z, and BRIFCANI A M A. A novel feature-selection approach based on the cuttlefish optimization algorithm for intrusion detection systems[J]. Expert Systems with Application, 2015, 42(5): 2670-2679. doi: 10.1016/j.eswa.2014.11.009. ZHU Guangyu and ZHANG Weibo. Optimal foraging algorithm for global optimization[J]. Applied Soft Computing, 2017, 51: 294-313. doi: 10.1016/j.asoc.2016.11. 047. -
計量
- 文章訪問數(shù): 1480
- HTML全文瀏覽量: 204
- PDF下載量: 210
- 被引次數(shù): 0