基于內(nèi)部諧振的弱信號補償介電目標重構(gòu)算法
doi: 10.11999/JEIT170287
基金項目:
國家自然科學基金(61371186, 61162007),廣西自然科學基金(2013GXNSFFA019004)
Target Reconstruction Method for Weak Signal Compensation Based on Internal Resonances
-
(Research Center for Wideband and Intelligence Information Technology, Guilin University of Electronic Technology, Guilin 541004, China)
Funds:
The National Natural Science Foundation of China (61371186, 61162007), The Guangxi Natural Science Foundation (2013GXNSFFA019004)
-
摘要: 對斷裂或下沉路基等電大尺寸異質(zhì)體目標重構(gòu)其幾何特征(如位置,形狀,尺寸等),在環(huán)境地質(zhì)等工程應(yīng)用及市政基礎(chǔ)設(shè)施維護中尤為重要。然而由于電磁波在目標體內(nèi)部的衰減,使得目標下表面反射回波很弱。對此該文提出一種基于內(nèi)部諧振的弱信號補償目標重構(gòu)算法。由于有限目標邊界的限制,電磁波在目標體內(nèi)部沿傳播方向產(chǎn)生多次反射,此現(xiàn)象在采樣時間記錄信號上體現(xiàn)為周期諧振。分析了諧振周期與目標寬度的關(guān)系并由此估計目標下表面的位置,結(jié)合去除虛像以后的目標前表面位置,重構(gòu)目標形狀。實驗結(jié)果驗證了提出方法的有效性以及對噪聲的魯棒性。Abstract: The geometric characteristics (such as position, shape, size, etc.) of a large size target such as the broken or sinking subgrade are particularly important in engineering applications and municipal infrastructure maintenance. Due to the attenuation of the electromagnetic wave inside the target, the reflection from back surface of the target is too weak to be detected. In this paper, a target reconstruction algorithm for weak signal compensation based on internal resonances is proposed. Due to the limited target boundary, the electromagnetic wave will produce multiple reflections along the propagation direction inside the target. This phenomenon is reflected as periodic resonances in the recording signal. The relationship between the resonant period and the target width is analyzed and the position of the back surface of the target is estimated. The virtual image around the front surface of target is removed by means of phase difference. The whole target shape is reconstructed according to the front surface and back surface of the target. The experimental results verify the effectiveness of the proposed method and the robustness to noise.
-
Key words:
- Target reconstruction /
- Internal resonances /
- Signal compensation
-
WALTON G, LATO M, ANSCHUTZ H, et al. Non-invasive detection of fractures, fracture zones, and rock damage in a hard rock excavation-experience from the Aspo Hard Rock laboratory in Sweden[J]. Engineering Geology, 2015, 196: 210-221. doi: 10.1016/j.enggeo.2015.07.010. DANIELS D J. Ground Penetrating Radar[M]. 2nd Ed., London: The Institution of Electrical Engineers, 2004: 4-5. SUN M, BASTARD C, PINEL N, et al. Road surface layers geometric parameters estimation by ground penetrating radar using estimation of signal parameters via rotational invariance techniques method[J]. IET Radar, Sonar Navigation, 2016, 10(3): 603-609. doi: 10.1049/iet-rsn.2015. 0374. TETIK E and AKDUMAN I. 3D imaging of dielectric objects buried under a rough surface by using CSI[J]. International Journal of Antennas and Propagation, 2015, 2015: 1-8. doi; 10.1155/2015/179304. CATAPANO I, CROCCO L, and ISERNIA T. On simple methods for shape reconstruction of unknown scatterers[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(5): 1431-1436. doi: 10.1109/TAP.2007.895563. VALERIO G, SOLDOVIERI F, BARONE P M, et al. Shape reconstruction of scatterers by suitable inverse processing of GPR data[C]. The 6th European Conference on Antennas and Propagation, Prague, 2012: 2209-2211. doi: 10.1109/ EuCAP.2012.6206268. NOMURA Y, KATO N, NAGANUMA Y, et al. A geometrical analysis of buried flat-plates on ground penetrating radar images[C]. IEEE International Conference on Systems, Man, and Cybernetics, Anchorage, 2011: 3317-3322. doi: 10.1109/ICSMC.2011.6084181. SUGAK V and SUGAK A. Phase spectrum of signals in ground-penetrating radar applications[J]. IEEE Transactions on Geoscience Remote Sensing, 2010, 48(4): 1760-1767. doi: 10.1109/TGRS.2009.2036163. HUUSKONEN E, MIKHNEV V, and OLKKONEN M. Discrimination of buried objects in impulse GPR using phase retrieval technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 1001-1007. doi: 10.1109/TGRS. 2014.2331427. SOLDOVIERI F, BRANCACCIO A, LEONE G, et al. Shape reconstruction of perfectly conducting objects by multiview experimental data[J]. IEEE Transactions on Geoscience Remote Sensing, 2005, 43(1): 65-71. doi: 10.1109/TGRS.2004. 839432. MIKHNEV V, OLKKONEN M, and HUUSKONEN E. Identification of buried objects in GPR using phase information extracted from transient response[C]. Proceedings of the 9th European Radar Conference, Amsterdam, 2012: 322-325. NI X and HUO X. Statistical interpretation of the importance of phase information in signal and image reconstruction[J]. Statistics Probability Letters, 2007, 77: 447-454. doi: 10.1016/j.spl.2006.08.025. PARRELLA G, HAJNSEK I, and PAPATHANASSIOU K P. On the interpretation of polarimetric phase differences in SAR data over land ice[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(2): 192-196. doi: 10.1109/LGRS. 2015.2505172. ZHOU Lijun, OUYANG Shan, LIAO Guisheng, et al. A novel reconstruction method based on changes in phase for subsurface large sloped dielectric target using GPR[J]. Journal of Applied Geophysics, 2016, 134: 36-43. doi: 10.1016/j.jappgeo.2016.08.013. SKOLNIK M. Radar Handbook[M]. 3rd Ed., New York: Mc Graw Hill, 2008: 3.13-3.15. SCHOFIELD J, DANIELS D, and HAMMERTON P. A multiple migration and stacking algorithm designed for land mine detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 6983-6988. doi: 10.1109/ TGRS.2014.2306325. WANG Z, ZHANG S, and WYROWSKI F. Modeling laser beam propagation through components with internal multiple reflections[C]. Components and Packaging for Laser Systems, California, 2015: 16-1-16-8. doi: 10.1117/12. 2079562. LU Y and DO M N. Multidimensional directional filter banks and surfacelets[J]. IEEE Transactions on Image Processing, 2007, 16(4): 918-931. doi: 10.1109/TIP.2007.891785. -
計量
- 文章訪問數(shù): 897
- HTML全文瀏覽量: 87
- PDF下載量: 217
- 被引次數(shù): 0