基于行為特征分析的社交網(wǎng)絡(luò)女巫節(jié)點檢測機(jī)制
doi: 10.11999/JEIT170246
基金項目:
國家自然科學(xué)基金(61371097),重慶高校創(chuàng)新團(tuán)隊建設(shè)計劃(CXTDX201601020)
Behaviors Analysis Based Sybil Detection in Social Networks
Funds:
The National Natural Science Foundation of China (61371097), The Program for Innovation Team Building at Institutions of Higher Education in Chongqing (CXTDX2016 01020)
-
摘要: 通過制造大量非法虛假身份,女巫攻擊者可以提高自身在社交網(wǎng)絡(luò)中的影響力,影響網(wǎng)絡(luò)中社交個體中繼選擇意愿,竊取社交個體隱私,對其利益造成嚴(yán)重威脅。在對女巫節(jié)點行為特征分析的基礎(chǔ)上,該文提出一種適用于社交網(wǎng)絡(luò)的女巫節(jié)點檢測機(jī)制,通過節(jié)點間靜態(tài)相似度和動態(tài)相似度評估節(jié)點影響力,并篩選可疑節(jié)點,進(jìn)而觀察可疑節(jié)點的異常行為,利用隱形馬爾科夫模型推測女巫節(jié)點通過偽裝所隱藏的真實身份,更加精確地檢測女巫節(jié)點。分析結(jié)果表明,所提機(jī)制能有效提高女巫節(jié)點的識別率,降低誤檢率,更好地保護(hù)社交個體的隱私和利益。
-
關(guān)鍵詞:
- 社交網(wǎng)絡(luò) /
- 女巫節(jié)點檢測 /
- 行為特征 /
- 隱形馬爾科夫模型
Abstract: Sybil attackers can improve their own influence in social networks by creating a large number of illegal illusive identities then affect the social individuals choice of relays and steal individuals privacy, which seriously threatens the interests of social individuals. Based on the analysis of the Sybils behaviors, a Sybil detection mechanism applied to social networks is proposed in this paper. The influence of nodes is calculated according to static similarity and dynamic similarity and then selecting the suspicious nodes based on the influence. Next, using the Hidden Markov Model (HMM) to infer the true identity of suspicious nodes by observing their abnormal behaviors, thus detecting the Sybil more precisely. Analysis results show that the proposed mechanism can effectively improve the recognition rate and reduce the false detection rate of the Sybil and thereby protecting the privacy and interests of social individuals better.-
Key words:
- Social networks /
- Sybil detection /
- Behavior characteristics /
- Hidden Markov Model (HMM)
-
TONG G, WU W, TANG S, et al. Adaptive influence maximization in dynamic social networks[J]. IEEE Transactions on Networking, 2017, 25(1): 112-125. doi: 10.1109/TNET.2016.2563397. CALDELLI R, BECARELLI R, and AMERINI I. Image origin classification based on social network provenance[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(6): 1299-1308. doi: 10.1109/TIFS.2017.2656842. KHAN M S, WAHAB A W A, HERAWAN T, et al. Virtual community detection through the association between prime nodes in online social networks and its application to ranking algorithms[J]. IEEE Access, 2016, 4: 9614-9624. doi: 10.1109 /ACCESS.2016.2639563. WU D P, ZHANG P N, WANG H G, et al. Node service ability aware, packet forwarding mechanism in intermittently connected wireless networks[J]. IEEE Transactions on Wireless Communications, 2016, 15(12): 8169-8181. doi: 10.1109/TWC.2016.2613077. ZHANG K, LIANG X, SHEN X, et al. Exploiting multimedia services in mobile social networks from security and privacy perspectives[J]. IEEE Communications Magazine, 2014, 52(3): 58-65. doi: 10.1109/MCOM.2014.6766086. ZHANG J, ZHANG R, SUN J, et al. TrueTop: a sybil- resilient system for user influence measurement on Twitter[J]. IEEE Transactions on Networking, 2016, 24(5): 2834-2846. doi: 10.1109/TNET.2015.2494059. VASUDEVAN S K, SIVARAMAN R, and KARTHICK M R. Sybil guard: Defending against sybil attacks via social networks[J]. International Journal of Computer Applications, 2010, 5(3): 27-42. doi: 10.1145/1159913.1159945. CHANG W, WU J, TAN C C, et al. Sybil defenses in mobile social networks[C]. IEEE Global Communications Conference, Atlanta, GA, USA, 2013: 641-646. doi: 10.1109/GLOCOM. 2013.6831144. KRISHNAMURTHY B, GILL P, and ARLITT M. A few chirps about Twitter[C]. Proceedings of the First Workshop on Online Social Networks, Seattle, USA, 2008: 19-24. CHU Z, GIANVECCHIO S, WANG H, et al. Who is tweeting on twitter: Human, bot or cyborg?[C]. Proceedings of 26th Annual Computer Security Applications Conference, Austin, USA, 2010: 21-30. TAN L, LIAN Y F, and CHEN K. Malicious users identification in social network based on composite classification model[J]. Computer Applications and Softeware, 2012, 29(12): 1-5. ZHANG K, LIANG X, LU R, et al. Exploiting mobile social behaviors for sybil detection[C]. IEEE Conference on Computer Communications, HongKong, China, 2015: 271-279. FENG M, MAO S, and JIANG T. Joint duplex mode selection, channel allocation, and power control for full- duplex cognitive femtocell networks[J]. Digital Communications and Networks, 2015, 1(1): 30-44. IRFAN R, BICKLER G, KHAN S U, et al. Survey on social networking services[J]. IET Networks, 2013, 2(4): 224-234. doi: 10.1049/iet-net.2013.0009. YAO L, MAN Y, HUANG Z, et al. Secure routing based on social similarity in opportunistic networks[J]. IEEE Transactions on Wireless Communications, 2016, 15(1): 594-605. doi: 10.1109/TWC.2015.2476466. WU D P, YANG B R, WANG H G, et al. Privacy-preserving multimedia big data aggregation in large-scale wireless sensor networks[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2016, 12(4): 1-19. doi: 10.1145/2978570. WANG R Y, YANG H P, WANG H G, et al. Social overlapping community-aware neighbor discovery for D2D communications[J]. IEEE Wireless Communications, 2016, 23(4): 28-34. doi: 10.1109/MWC.2016.7553023. QIN L, SUN K Q, and LI S G. Maximum fuzzy entropy image segmentation based on artificial fish school algorithm[C]. International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 2016: 164-168. LIANG X, LI X, ZHANG K, et al. Fully anonymous profile matching in mobile social networks[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(9): 641-655. doi: 10.1109/JSAC.2013.SUP.0513056. LUO W, WU Y, YUAN J, et al. The calculation method with Grubbs test for real-time saturation flow tate at signalized intersection[C]. Proceedings of the Second International Conference on Intelligent Transportation, Singapore, 2017: 129-136. KITZIG A, NAROSKA E, STOCKMANNS G, et al. A novel approach to creating artificial training and test data for an HMM based posture recognition system[C]. International Workshop on Machine Learning for Signal Processing, Salerno, Italy, 2016: 1-6. WANG X F, LIU L, and SU J S. RLM: A general model for trust representation and aggregation[J]. IEEE Transactions on Service Computing, 2012, 5(1): 131-143. doi: 10.1109 /TSC.2010.56. -
計量
- 文章訪問數(shù): 1216
- HTML全文瀏覽量: 202
- PDF下載量: 310
- 被引次數(shù): 0