一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于TL1范數(shù)約束的子空間聚類方法

李海洋 王恒遠

李海洋, 王恒遠. 基于TL1范數(shù)約束的子空間聚類方法[J]. 電子與信息學(xué)報, 2017, 39(10): 2428-2436. doi: 10.11999/JEIT170193
引用本文: 李海洋, 王恒遠. 基于TL1范數(shù)約束的子空間聚類方法[J]. 電子與信息學(xué)報, 2017, 39(10): 2428-2436. doi: 10.11999/JEIT170193
LI Haiyang, WANG Hengyuan. Subspace Clustering Method Based on TL1 Norm Constraints[J]. Journal of Electronics & Information Technology, 2017, 39(10): 2428-2436. doi: 10.11999/JEIT170193
Citation: LI Haiyang, WANG Hengyuan. Subspace Clustering Method Based on TL1 Norm Constraints[J]. Journal of Electronics & Information Technology, 2017, 39(10): 2428-2436. doi: 10.11999/JEIT170193

基于TL1范數(shù)約束的子空間聚類方法

doi: 10.11999/JEIT170193
基金項目: 

國家自然科學(xué)基金(11271297),陜西省自然科學(xué)基金(2015JM1020)

Subspace Clustering Method Based on TL1 Norm Constraints

Funds: 

The National Natural Science Foundation of China (11271297), The Natural Science Foundation of Shaanxi Province (2015JM1020)

  • 摘要: 該文將TL1范數(shù)應(yīng)用于子空間聚類的研究中,提出基于TL1范數(shù)約束的子空間聚類優(yōu)化模型。盡管該優(yōu)化模型是非凸的,在無噪音的情形下,證明了它的最優(yōu)解為具有塊對角結(jié)構(gòu)的系數(shù)矩陣,這對隨后進行的譜聚類提供了理論保證;在有噪聲的情形下,它的約束條件等價于以干凈數(shù)據(jù)為字典的優(yōu)化模型,因而求解出的系數(shù)矩陣提高了聚類的精確度。進一步,利用增廣拉格朗日-交替方向乘子方法給出該優(yōu)化模型的求解方法。實驗結(jié)果表明,基于TL1范數(shù)的子空間聚類方法不僅增強了系數(shù)矩陣的稀疏性,而且在聚類精確度,對噪音的魯棒性方面要優(yōu)于低秩子空間聚類方法和稀疏子空間聚類方法。
  • ZHANG Tao, TANG Zhenmin, and L Jianyong. Improved algorithm based on low rank representation for subspace clustering[J]. Journal of Electronics Information Technology, 2016, 38(11): 2811-2818. doi: 10.11999/JEIT 160009.
    張濤, 唐振民, 呂建勇. 一種基于低秩表示的子空間聚類改進算法[J]. 電子與信息學(xué)報, 2016, 38(11): 2811-2818. doi: 10.11999/JEIT160009.
    王衛(wèi)衛(wèi), 李小平, 馮象初, 等. 稀疏子空間聚類綜述[J]. 自動化學(xué)報, 2015, 41(8): 1373-1384. doi: 10.16383/j.aas.2015. c140891.
    WANG Weiwei, LI Xiaoping, FENG Xiangchu, et al. A survey on sparse subspace clustering[J]. Acta Automatica Sinica, 2015, 41(8): 1373-1384. doi: 10.16383/j.aas.2015. c140891.
    YANG A, WRIGHT J, MA Y, et al. Unsupervised segmentation of natural images via lossy data compression[J]. Computer Vision and Image Understanding, 2008, 110(2): 212-225. doi: 10.1016/j.cviu.2007.07.005.
    WRIGHT J, MAIRAL J, MA Y, et al. Sparse representation for computer vision and pattern recognition[J]. Proceedings of the IEEE, 2010, 98(6): 1031-1044. doi: 10.1109/JPROC. 2010.2044470.
    LI C G, YOU C, and VIDAL R. Structured sparse subspace clustering: A joint affinity learning and subspace clustering framework[J]. IEEE Transactions on Image Processing, 2017, 26(6): 2988-3001. doi: 10.1109/TIP.2017.2691557.
    VIDAL R. Subspace clustering[J]. IEEE Signal Processing Magazine, 2011, 28(2): 52-68. doi: 10.1109/MSP.2010. 939739.
    ELHAMIFAR E and VIDAL R. Sparse subspace clustering [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 2009: 2790-2797. doi: 10.1109/CVPR.2009.5206547.
    ELHAMIFAR E and VIDAL R. Sparse subspace clustering: Algorithm, theory, and applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2765-2781. doi: 10.1109/TPAMI.2013.57.
    LIU G C, LIN Z C, YAN S C, et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171-184. doi: 10.1109/TPAMI.2012.88.
    LIU G C, LIN Z C, and YU Y. Robust subspace segmentation by low-rank representation[C]. Proceedings of the International Conference on Machine Learning, Haifa, Israel, 2010: 663-670.
    NG A Y, JORDAN M, and WEISS Y. On spectral clustering: Analysis and an algorithm[C]. Proceedings of the Advances in Neural Information Processing Systems, Vancouver, Canada, 2001: 849-856.
    PAN J, MATHIEU S, and HONG L. Efficient dense subspace clustering[C]. IEEE Winter Conference on Applications of Computer Vision, USA, 2014: 461-468. doi: 10.1109/WACV.2014.6836065.
    ZHUANG L S, MA Y, LIN Z C, et al. Non-negative low-rank and sparse graph for semi-supervised learning[C]. IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, 2012: 2328-2335. doi: 10.1109/CVPR.2012. 6247944.
    PATEL V M, NGUYEN H V, and VIDAL R. Latent space sparse and low-rank subspace clustering[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(4): 691-701. doi: 10.1109/JSTSP.2015.2402643.
    李波, 盧春園, 冷成財, 等. 基于局部圖拉普拉斯約束的魯棒低秩表示聚類方法[J]. 自動化學(xué)報, 2015, 41(11): 1971-1980. doi: 10.16383/j.aas.2015.c150031.
    LI Bo, LU Chunyuan, LENG Chengcai, et al. Robust low rank subspace clustering based on local graph laplace constraint[J]. Acta Automatica Sinica, 2015, 41(11): 1971-1980. doi: 10.16383/j.aas.2015.c150031.
    NIKOLOVA M. Local strong homogeneity of a regularized estimator[J]. SIAM Journal on Applied Mathematics, 2000, 61(2): 633-658. doi: 10.1137/S0036139997327794.
    L J, and FAN Y. A unified approach to model selection and sparse recovery using regularized least squares[J]. The Annals of Statistics, 2009, 37(6A): 3498-3528. doi: 10.1214/ 09-AOS683.
    ZHANG S, YIN P H, and JACK X. Transformed schatten iterative thresholding algorithms for matrix rank minimization and applications[J]. Arxiv Preprint, 2015, 1506. 04444. https://www.researchgate.net/publication/2784138 40.
    ZHANG S and JACK X. Minimization of transformed L1 penalty: Theory, difference of convex function algorithm, and robust application in compressed sensing[J]. Arxiv Preprint, 2016, 1411.5735v3. https://arxiv.org/abs/1411.5735.
    HORN R and JOHNSON C. Topics in Matrix Analysis[M]. Cambridge University Press, 1991: 144-163.
    LIN Z C, CHEN M, and MA Y. The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices[R]. UIUC Technical Report UILU-ENG-09-2215, 2009.
    吳杰祺, 李曉宇, 袁曉彤, 等. 利用坐標下降實行并行稀疏子空間聚類[J]. 計算機應(yīng)用, 2016, 36(2): 372-376. doi: 10.11772/j.issn.1001-9081.2016.02.0372.
    WU Jieqi, LI Xiaoyu, YUAN Xiaotong, et al. Parallel sparse subspace clustering via coordinate descent minimization[J]. Journal of Computer Applications, 2016, 36(2): 372-376. doi: 10.11772/j.issn.1001-9081.2016.02.0372.
    VIDAL R and FAVARO P, A closed form solution to robust subspace estimation and clustering[C]. IEEE Conference on Computer Vision and Pattern Recognition, USA, 2011, 1801-1807. doi: 10.11091/CVPR.2011.5995365.
    BERTSEKAS D. Constrained Optimization and Lagrange Multiplier Methods[M]. Belmont, MA, USA: Athena Scientific, 1996: 326-340.
    CANDES E J, LI X D, MA Y, et al. Robust principal component analysis[J]. Journal of the ACM, 2010, 58(3): 11. doi: 10.1145/1970392.1970395.
    GEORGHIADES A, BELHUMEUR P, and KRIEGMAN D. From few to many: Illumination cone models for face recognition under variable lighting and pose[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 23(6): 643-660. doi: 10.1109/34.927464.
    YAN J Y and POLLEYFEYS M. A general framework for motion segmentation: Independent, articulated, rigid, non-rigid, degenerate and non-degenerate[C]. Proceedings of the European Conference on Computer Vision, Graz, Austria, 2006: 94-106. doi: 10.1007/11744085_8.
    FENG J S, LIN Z C, XU H, et al. Robust subspace segmentation with block-diagonal prior[C]. Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 3818-3825. doi: 10.1109/CVPR.2014.482.
    VIDAL R and FAVARO P. Low-rank subspace clustering (LRSC)[J]. Pattern Recognition Letters, 2014, 43: 47-61. doi: 10.1016/j.patrec.2013.08.006.
  • 加載中
計量
  • 文章訪問數(shù):  1212
  • HTML全文瀏覽量:  136
  • PDF下載量:  279
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-03-03
  • 修回日期:  2017-06-27
  • 刊出日期:  2017-10-19

目錄

    /

    返回文章
    返回