Wearable Method for Fall Detection Based on Kalman Filter and k-NN Algorithm
Funds:
The National Natural Science Foundation of China (61602016)
-
摘要: 針對老年人跌倒檢測的準確性和實時性需求,該文首先建立了基于姿態(tài)角的活動描述模型,研發(fā)了集成加速度傳感器、陀螺儀和藍牙的活動感知模塊,從而實時采集運動變化數據并使用藍牙發(fā)送到智能手機。其次,選取姿態(tài)角及加速度信號向量模作為特征量,通過卡爾曼濾波對數據進行去噪與融合,并應用滑動窗口和k-NN算法實現了可實時感知老年人跌倒并報警的系統(tǒng)。實驗證明系統(tǒng)在二分類場景下的跌倒檢測準確率為98.9%,而敏感度和特異性分別達到98.9%和98.5%,驗證了系統(tǒng)具有良好的實時性和較高的準確率。Abstract: According to the accurate and real-time requirement for fall detection. An activity model based on attitude angles is firstly established. A sensor board integrated with trial-axil accelerator and gyroscope is developed, which can capture the accelerations and angular velocities of human activities and transmit them to a smart phone by Bluetooth. Secondly, the three-dimensional attitude angle and acceleration signal vector magnitude are selected as features for fall detection. The collected data is preprocessed using Kalman filter to reduce noise and enhance the precision of attitude angle calculation. The k-Nearest Neighbor (k-NN) algorithm and appropriate sliding window are introduced to develop the fall detection and alert system. At last, the experimental results show that the system discriminates falls from the activities of daily living with accuracy of 98.9%, while the sensitivity and specificity are 98.9%, and 98.5% respectively. It proves that the method has favorable accuracy and reliability.
-
田雪原. 人口老齡化與養(yǎng)老保險體制創(chuàng)新[J]. 人口學刊, 2014, 36(1): 5-15. doi: 10.3969/j.issn.1004-129X.2014.01.001. TIAN Xueyuan. Population aging and endowment insurance system innovation[J]. Population Journal, 2014, 36(1): 5-15. doi: 10.3969/j.issn.1004-129X.2014.01.001. 唐雨欣, 郭小牧, 譙治蛟, 等. 北京, 上海社區(qū)老年人跌倒現況及影響因素研究[J]. 中華疾病控制雜志, 2017, 21(1): 72-76. doi: 10.16462/j.cnki.zhjbkz.2017.01.017. TANG Yuxin, GUO Xiaomu, QIAO Zhijiao, et al. Analysis on prevalence and risk factors for falls among the elderly in communities of Beijing and Shanghai[J]. Chinese Journal of Disease Control Prevention, 2017, 21(1): 72-76. doi 10. 16462/j.cnki.zhjbkz. 2017.01.017. KOSHMAK Gregory, LOUTFI Amy, and LINDEN Maria. Challenges and issues in multisensor fusion approach for fall detection: Review paper[J]. Journal of Sensors, 2016, 2016: Article ID 837459. doi: 10.1155/2016/6931789. DEBARD Glen, MERTENS Marc, DESCHODT Mieke, et al. Camera-based fall detection using real-world versus simulated data: How far are we from the solution?[J]. Journal of Ambient Intelligence Smart Environments, 2016, 8(2): 149-168. doi: 10.3233/AIS-160369. BALDEWIJNS Greet, DEBARD Glen, MERTES Gert, et al. Bridging the gap between real-life data and simulated data by providing a highly realistic fall dataset for evaluating camera-based fall detection algorithms[J]. Healthcare Technology Letters, 2016, 3(1): 6-11. doi: 10.1049/htl.2015. 0047 MAZUREK Pawel and MORAWSKI Roman Z. Application of nave Bayes classifier in fall detection systems based on infrared depth sensors[C]. Proceedings of the IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing System-Technology and Applications (IDAACS), Warsaw, Poland, 2015: 717-722. doi: 10.1109/ IDAACS.2015.7341397. SALMAN KHAN Muhammad, YU Miao, FENG Pengming, et al. An unsupervised acoustic fall detection system using source separation for sound interference suppression[J]. Signal Processing, 2015, 110(C): 199-210. doi: 10.1016/j. sigpro.2014.08.021. BECKER C, SCHWICKERT L, MELLONE S, et al. Proposal for a multiphase fall model based on real-world fall recordings with body-fixed sensors[J]. Zeitschrift Fr Gerontologie Und Geriatrie, 2012, 45(8): 707-715. doi: 10.1007/s00391-012-0403-6. WANG Jin, ZHANG Zhongqi, LI Bin, et al. An enhanced fall detection system for elderly person monitoring using consumer home networks[J]. IEEE Transactions on Consumer Electronics, 2014, 60(1): 23-29. doi: 10.1109/ TCE.2014.6780921. QU Weihao, LIN Feng, WANG Aosen, et al. Evaluation of a low-complexity fall detection algorithm on wearable sensor towards falls and fall-alike activities[C]. Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium. Philadelphia, PA, United States, 2015: 1-6. doi: 10.1109/ SPMB.2015.7405427. QU Weihao, LIN Feng, and XU Wenyao. A real-time low-complexity fall detection system on the smartphone[C]. Proceedings of the IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies. Washington, DC, United States, 2016: 354-356. doi: 10.1109/CHASE.2016.73. SALGADO Paulo and AFONSO Paulo. Body fall detection with Kalman filter and SVM[C]. Proceedings of the 11th Portuguese Conference on Automatic Control, Porto, Portugal, 2015, 321 LNEE: 407-416. doi: 10.1007/978-3-319- 10380-8_39. BOURKE A K and LYONS G M. A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor[J]. Medical Engineering Physics, 2008, 30(1): 84-90. doi: 10.1016/j.medengphy.2006.12.001. 陳航科, 張東升, 盛曉超, 等. 基于Kalman濾波算法的姿態(tài)傳感器信號融合技術研究[J]. 傳感器與微系統(tǒng), 2013, 32(12): 82-85. CHEN Hangke, ZHANG Dongsheng, SHENG Xiaochao, et al. Research on signal fusion technology of attitude sensor based on Kalman filtering algorithm[J]. Transducer and Microsystem Technologies, 2013, 32(12): 82-85. doi: 10.3969/ j.issn.1000-9787. 2013.12.023. LI Qiang, STANKOVIC John A, HANSON Mark A, et al. Accurate, fast fall detection using gyroscopes and accelerometer derived posture information[C]. Proceedings of the Sixth International Workshop on Wearable and Implantable Body Sensor Networks, Berkeley, CA, United States, 2009: 138-143. doi: 10.1109/BSN.2009.46. HE Jian and HU Chen. A portable fall detection and alerting system based on k-NN algorithm and remote medicine[J]. China Communications, 2015, 12(4): 23-31. doi: 10.1109/CC. 2015.7114066. ERDOGAN Senol Zafer and BILGIN Turgay Tugay. A data mining approach for fall detection by using k-Nearest Neighbour algorithm on wireless sensor network data[J]. IET Communications, 2012, 6(18): 3281-3287. doi: 10.1049/ iet-com.2011.0228. -
計量
- 文章訪問數: 1583
- HTML全文瀏覽量: 179
- PDF下載量: 315
- 被引次數: 0