多天線系統(tǒng)中面向物理層安全的極化編碼方法
doi: 10.11999/JEIT170068
基金項目:
國家863計劃項目(2015AA01A708),國家青年科學基金(61501516)
Polar Code for Physical Layer Security in Multi-antenna Systems
Funds:
The National 863 Program of China (2015AA01A708), The National Natural Science Foundation for Young Scientists of China (61501516)
-
摘要: 該文提出一種基于多輸入信道最大容量差映射的極化安全編碼方法,通過適當降低信道極化速度達到提高安全傳輸速率的目的。首先,利用信道極化結構,將極化后的邏輯信道按信道質(zhì)量劃分為好信道與差信道兩類;然后,通過具體的邏輯信道刪除率迭代分析,提出一種能夠有效提升差邏輯信道容量并降低好邏輯信道容量的最大容量差信道映射方法,達到降低信道極化速度的目的;最后,利用加權修正合法信道與竊聽信道最大容量差映射結果,實現(xiàn)多輸入信道下的極化安全編碼。仿真結果表明,在極化階數(shù)n=9的二進制刪除信道下,所提方法相比隨機映射與Arikan方法,安全傳輸速率分別由0.029, 0.004提升到了0.042,并且所提方法同樣適用于衰落信道場景。Abstract: A maximal-capacity-difference mapping-based secrecy polar coding method is proposed. It improves the secrecy rate by reducing the channel polarization speed. First, the polarized channels are divided into two categoryies based on the polarization structure: the good quality ones and the bad quality ones. By analyzing the eraser rates of the polarized channels, a maximal-capacity-difference mapping method is proposed. Through improving the capacity of the bad polarized channels and reducing that of the good polarized channels, the channel polarization speed decreases efficiently. Finally, weighting is adopted to modify the maximal-capacity-difference mapping results between legitimate channels and wiretap channels, thus the secrecy polar coding in multi-input channel is implemented. Simulation results verify that the secrecy rate of proposed method in binary erasure channels can be increased from 0.029 and 0.004 to 0.042, compared to the random mapping method and Arikans method at polarization ordern=9, respectively. And the proposed method also works in fading channels.
-
Key words:
- Polar codes /
- Physical layer security /
- Channel mapping /
- Multi-input channel
-
KOLOKOTRONIS N, KATSIONTIS A, and KALOUPTSIDIS N. Secretly pruned convolutional codes: Security analysis and performance results[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(7): 1500-1514. doi: 10.1109/ TIFS.2016.2537262. WANG Bo, MU Pengcheng, WANG Chao, et al. Combining dirty-paper coding and artificial noise for secrecy[C]. IEEE International Communication on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 2034-2038. KLINC D, JEONGSEOK H, MCLAUGHLIN S W, et al. LDPC codes for the Gaussian wiretap channel[J]. IEEE Transactions on Information Forensics Security, 2011, 6(3): 532-540. doi: 10.1109/TIFS.2011.2134093. BALDI M, BIANCHI M, and CHIARALUCE F. Coding with scrambling, concatenation, and HARQ for the AWGN wire-tap channel: A security gap analysis[J]. IEEE Transactions on Information Forensics Security, 2012, 7(3): 883-894. doi: 10.1109/TIFS.2012.2187515. YI Ming, JI Xinsheng, HUANG Kaizhi, et al. Achieving strong security based on fountain code with coset precoding[J]. IET Communications, 2014, 8(14): 2476-2483. doi: 10.1049/iet-com.2013.1033. ARIKAN E. Channel polarization: A method for constructing capacity-achieving codes for symmetry binary input memoryless channels[J]. IEEE Transactions on Information Theory, 2009, 55(7): 3051-3073. doi: 10.1109/ TIT.2009. 2021379. HAJIMOMENI M, AGHAEINIA H, KIM I M, et al. Cooperative jamming polar codes for multiple-access wiretap channels[J]. IET Communications, 2016, 10(4): 407-415. doi: 10.1049/iet-com.2015.0624. WEI Yipeng and ULUKUS S. Polar coding for the general wiretap channel with extensions to multiuser scenarios[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(2): 278-291. doi: 10.1109/JSAC.2015.2504275. ANDERSSON M, RATHI V, THOBABEN R, et al. Nested polar codes for wiretap and relay channels[J]. IEEE Communications Letters, 2010, 14(4): 752-754. doi: 10.1109/ LCOMM.2010.08.100875. MAHDAVIFAR H and VARDY A. Achieving the secrecy capacity of wiretap channels using polar codes[J]. IEEE Transactions on Information Theory, 2011, 57(10): 6428-6443. doi: 10.1109/TIT.2011.2162275. MIRGHASEMI H and BELFIORE J. The un-polarized bit-channels in the wiretap polar coding scheme[C]. International Conference on Wireless Communications, Vehicular Technology, Information Theory and Aerospace Electronic Systems, Manchester, Denmark, 2014: 1-5. NIU K, CHEN K, and LIN J R. Beyond turbo codes: Ratecompatible punctured polar codes[C]. IEEE International Conference on Communications, Budapest, Hungary, 2013: 3423-3427. 易鳴, 季新生, 黃開枝, 等. 面向物理層安全的一種打孔極化編碼方法[J]. 電子與信息學報. 2014, 36(12): 2835-2841. doi: 10.3724/SP.J.1146.2014.00013. YI Ming, JI Xinsheng, HUANG Kaizhi, et al. A method based on puncturing polar codes for physical layer security[J]. Journal of Electronics Information Technology, 2014, 36(12): 2835-2841. doi: 10.3724/SP.J.1146.2014.00013. GAO Y, CAI Y, SHI Q, et al. Joint transceiver designs for secure communications over MIMO relay[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 3851-3855. CHEN K, NIU K, and LIN J. Practical polar code construction over parallel channels[J]. IET Communications, 2013, 7(7): 620-627. doi: 10.1049/iet-com.2012.0428. ARIKAN E and TELATAR E. On the rate of channel polarization[C]. IEEE International Symposium on Information Theory, Seoul, South Korea, 2009: 1493-1495. WANG W, TEH K C, and LI K H. Artificial noise aided physical layer security in multi-antenna small-cell networks [J]. IEEE Transactions on Information Forensics and Security, 2017, 12(6): 1470-1482. doi: 10.1109/TIFS.2017. 2663336. -