一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于局部差別性分析的目標跟蹤算法

田鵬 呂江花 馬世龍 汪溁鶴

田鵬, 呂江花, 馬世龍, 汪溁鶴. 基于局部差別性分析的目標跟蹤算法[J]. 電子與信息學報, 2017, 39(11): 2635-2643. doi: 10.11999/JEIT170045
引用本文: 田鵬, 呂江花, 馬世龍, 汪溁鶴. 基于局部差別性分析的目標跟蹤算法[J]. 電子與信息學報, 2017, 39(11): 2635-2643. doi: 10.11999/JEIT170045
TIAN Peng, Lü Jianghua, MA Shilong, WANG Ronghe. Robust Object Tracking Based on Local Discriminative Analysis[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2635-2643. doi: 10.11999/JEIT170045
Citation: TIAN Peng, Lü Jianghua, MA Shilong, WANG Ronghe. Robust Object Tracking Based on Local Discriminative Analysis[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2635-2643. doi: 10.11999/JEIT170045

基于局部差別性分析的目標跟蹤算法

doi: 10.11999/JEIT170045
基金項目: 

國家自然科學基金(61300007)

Robust Object Tracking Based on Local Discriminative Analysis

Funds: 

The National Natural Science Foundation of China (61300007)

  • 摘要: 在復雜場景下,為了更好地提升跟蹤的魯棒性,基于局部的相似度測量得到了廣泛應(yīng)用。然而,局部遮擋,形變和光照變化等場景的復雜性,基于傳統(tǒng)局部相似度測量的目標跟蹤存在很大缺點,例如,在跟蹤過程中,僅僅依靠目標和模板的匹配度容易造成跟蹤的偏移現(xiàn)象。鑒于此,該文提出一種基于局部差別性相似度測量的目標跟蹤算法。首先,以目標-背景的差異性,形成相似性和差異性相結(jié)合的局部判別性相似度測量;其次,基于子塊在視頻序列中的差異性,對子塊進行差異性學習,以提高跟蹤的準確性。最后,在粒子濾波框架下,基于差別性局部區(qū)域測量構(gòu)建了一種有效的目標跟蹤算法。實驗結(jié)果表明,在復雜圖像序列中,該算法實現(xiàn)了目標的準確跟蹤,并在光照變化、旋轉(zhuǎn)、縮放和遮擋等方面具有較好的效果。
  • 劉紅亮, 周生華, 劉宏偉, 等. 一種航跡恒虛警的目標檢測跟蹤一體化算法[J]. 電子與信息學報, 2016, 38(5): 1072-1078. doi: 10.11999/JEIT150638.
    LIU Hongliang, ZHOU Shenghua, LIU Hongwei, et al. An integrated target detection and tracking algorithm with constant track false alarm rate[J]. Journal of Electronics Information Technology, 2016, 38(5): 1072-1078. doi: 10.11999/JEIT150638.
    MARKUS Z, THOMAS N, and ANDREAS K. Tracking human locomotion by relative positional feet tracking[C]. 2015 IEEE Virtual Reality (VR), Arles, France, 2015: 317-318.
    EVANGELO S, HATICE G, and ANDREA C. Automatic analysis of facial affect: A survey of registration, representation, and recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(6): 1113-1133.
    SAI Y, BO X, Li P Y, et al. Robust scene matching method based on sparse representation and iterative correction[J]. Image and Vision Computing, 2017, 60(4): 115-123.
    PENG P L, ERIK B, and HAI B L. Encoding color information for visual tracking: algorithms and benchmark[J]. IEEE Transactions on Image Processing, 2015, 24(12): 5630-5644. doi: 10.1109/TIP.2015.2482905.
    BABENKO B, YANG M H, and BELONG S. Robust object tracking with online multiple instance learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632. doi: 10.1109/TPAMI.2010.226.
    ZHANG K, ZHANG L, and YANG M H. Real-time object tracking via online discriminative feature selection[J]. IEEE Transactions on Image Processing, 2013, 22(12): 4664-4677. doi: 10.1109/TIP.2013.2277800.
    LAURA S L and ERIK L M. Distribution fields for tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 1910-1917.
    BAO C, WU Y, LING H, et al. Real time robust L1 tracker using accelerated proximal gradient approach[C]. IEEE Conference Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 2012: 1830-1837.
    MEI X, LING H, and WU Y. Efficient minimum error bounded particle resampling LI tracker with occlusion detection[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2661-2675.
    KWON J and LEE K M. Highly non-rigid object tracking via patch-based dynamic appearance modeling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(10): 2427-2441.
    LIU B, HUANG J, YANG L, et al. Robust tracking using local sparse appearance model and k-selection[C]. IEEE Conference on Computer Vision and Pattern Recognition. Colorado, CO, USA, 2011, 201: 1313-1320.
    JIA X, LU H, and YANG M H. Visual tracking via adaptive structural local sparse appearance model[C]. IEEE Conference Computer Vision and Pattern Recognition (CVPR), USA, 2012: 1822-1829.
    ADAM A, RIVLINi E, and SHIMSHONI I. Robust fragment- based tracking using the integral histogram[C]. IEEE Conference Computer Vision and Pattern Recognition (CVPR), USA, 2006: 798-805.
    HE S, YANG Q, and Yang M H. Visual tracking via locality sensitive histograms[C]. IEEE Conference Computer Vision and Pattern Recognition (CVPR), Portland, OR, USA, 2013: 2427-2434.
    JIA Y M, HUA B, JI Z, et al. Robust feature matching for remote sensing image registration via locally linear transforming[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12): 6469-6481. doi: 10.1109/ TGRS.2015.2441954.
    WANG D, LU H C, and BO C J. Visual tracking via weighted local cosine similarity[J]. IEEE Transactions on Cybernetics, 2015, 45(9): 1838-1850. doi: 10.1109/TCYB. 2014.2360924.
    LIU H C, LI S T, and FANG L Y. Robust object tracking based on principal component analysis and local parse representation[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(11): 2863-2875. doi: 10.1109/TIM. 2015.2437636.
    ZHUANG B H, LU H C, XIAN Z Y, et al. Visual tracking via discriminative sparse similarity map[J]. IEEE Transactions on Image Processing, 2014, 23(4): 1872-1881. doi: 10.1109/ TIP.2014.2308414.
    畢篤彥, 庫濤, 查宇飛, 等. 基于顏色屬性直方圖的尺度目標跟蹤算法研究[J]. 電子與信息學報, 2016, 38(5): 1009-1106. doi: 10.11999/JEIT150921.
    BI Duyan, KU Tao, ZHA Yufei, et al. Scale-adaptive object tracking based on color names histogram[J]. Journal of Electronics Information Technology, 2016, 38(5): 1009-1106. doi: 10.11999/JEIT150921.
    占榮輝, 劉盛啟, 歐建平, 等. 基于序貫蒙特卡羅概率假設(shè)密度濾波的多目標檢測前跟蹤改進算法[J]. 電子與信息學報, 2014, 36(11): 2593-2599. doi: 10.3724/SP.J.1146.2013.02029.
    ZHAN Ronghui, LIU Shengqi, OU Jianping , et al. Improved multi target track before detect algorithm using the sequential monte carlo probability hypothesis density filter[J]. Journal of Electronics Information Technology, 2014, 36(11): 2593-2599. doi: 10.3724/SP.J.1146.2013.02029.
    ORONR S and AHARON B H. Locally orderless tracking[J]. International Journal of Computer Vision, 2015, 111(2): 213-228. doi: 10.1109/CVPR.2012.6247895.
  • 加載中
計量
  • 文章訪問數(shù):  1252
  • HTML全文瀏覽量:  111
  • PDF下載量:  305
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-01-02
  • 修回日期:  2017-07-20
  • 刊出日期:  2017-11-19

目錄

    /

    返回文章
    返回