目標引入干擾條件下的Wald檢測器
doi: 10.11999/JEIT161333
基金項目:
國家自然科學基金青年基金(61501505, 61501506),湖北省自然科學基金(2015CFB607)
Wald Tester for Signal Detection in the Presence of Target-induced Interference
Funds:
The National Natural Science Foundation of China (61501505, 61501506), Hubei Provincial Natural Science Foundation (2015CFB607)
-
摘要: 多徑效應(yīng)或多輸入多輸出(MIMO)雷達發(fā)射波形不完全正交的情況下會引入干擾,此種干擾通常被稱為目標引入干擾。針對存在目標引入干擾的目標檢測問題,該文基于Wald準則提出適用于均勻環(huán)境和非均勻環(huán)境下的自適應(yīng)檢測器,所提出的檢測器可有效抑制目標引入的干擾,且具有恒虛警率(CFAR)特性。仿真結(jié)果表明,當干擾子空間已知時,該文所提出的檢測器可完全抑制干擾,當干擾子空間未知時,所提檢測器可有效抑制位于信號子空間的正交補空間內(nèi)的干擾。
-
關(guān)鍵詞:
- 自適應(yīng)檢測 /
- 多通道信號檢測 /
- 目標引入干擾 /
- Wald檢測準則
Abstract: In radar system, the target-induced interference often arises due to multipath effect or non-ideal transmit waveform of Multiple-Input Multiple-Output (MIMO) radar. For the issue of detecting a target with target-induced interference, the detectors are proposed based on the design criterion of Wald test both in the homogeneous environment and partially homogeneous environment. The proposed detectors are proved to be effective for suppressing the target-induced interference and they can ensure the desirable Constant False Alarm Rate (CFAR) property with respect to the unknown parameters of the noise. Simulation results show that the proposed detectors can suppress the interference effectively when the interference subspace is known, and can suppress the interference lying in the orthogonal complement space of the nominal signal subspace when the interference is completely unknown. -
KELLY E J. An adaptive detection algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, 22(1): 115-127. doi: 10.1109/TAES.1986.310745. CHEN W S and REED I S. A new CFAR detection test for radar[J]. Digital Signal Processing, 1991, 1(4): 198-214. doi: 10.1016/1051-2004(91)90113-Y. DE MAIO A. A new derivation of the adaptive matched filter [J]. IEEE Signal Processing Letters, 2004, 11(10): 792-793. doi: 10.1109/LSP.2004.835464. DE MAIO A. Rao test for adaptive detection in Gaussian interference with unknown covariance matrix[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3577-3584. doi: 10.1109/TSP.2007.894238. KRAUT S and SCHARF L L. The CFAR adaptive subspace detector is a scale-invariant GLRT[J]. IEEE Transactions on Signal Processing, 1999, 47(9): 2538-2541. doi: 10.1109/ 78.782198. RAGHAVAN R S, PULSONE N, and MCLAUGHLIN D J. Performance of the GLRT for adaptive vector subspace detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(4): 1473-1487. doi: 10.1109/7.543869. LIU J, ZHANG Z J, and YANG Y. Optimal waveform design for generalized likelihood ratio and adaptive matched filter detectors using a diversely polarized antenna[J] Signal Processing, 2012, 92(4): 1126-1131. doi: 10.1016/j.sigpro. 2011.11.006. KRAUT S, SCHARF L L, and MCWHORTER L T. Adaptive subspace detectors[J]. IEEE Transactions on Signal Processing, 2001, 49(1): 1-16. doi: 10.1109/78.890324. LIU W, XIE W, LIU J, et al. Adaptive double subspace signal detection in Gaussian backgroundPart I: Homogeneous environments[J] IEEE Transactions on Signal Processing, 2014, 62(9): 2345-2357. doi: 10.1109/TSP.2014.2309556. BANDIERA F, DE MAIO A, GRECO A S, et al. Adaptive radar detection of distributed targets in homogeneous and partially homogeneous noise plus subspace interference[J]. IEEE Transactions on Signal Processing, 2007, 55(4): 1223-1237. doi: 10.1109/TSP.2006.888065. LIU W, LIU J, HUANG L, et al. Rao tests for distributed target detection in interference and noise[J]. Signal Processing, 2015, 117(C): 333-342. doi: 10.1016/j.sigpro. 2015.06.012. CIUONZO D, DE MAIO A, and ORLANDO D. A unifying framework for adaptive radar detection in homogeneous plus structured interferencePart I: On the maximal invariant statistic[J]. IEEE Transactions on Signal Processing, 2016, 64(11): 2894-2906. doi: 10.1109/TSP.2016.2519003. CIUONZO D, DE MAIO A, and ORLANDO D. A unifying framework for adaptive radar detection in homogeneous plus structured interferencePart II: Detectors design[J]. IEEE Transactions on Signal Processing, 2016, 64(11): 2907-2919. doi: 10.1109/TSP.2016.2519005. LIU W, WANG Y, LIU J, et al. Design and performance analysis of adaptive detectors for subspace signals in orthogonal interference and gaussian noise[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(5): 2068-2079. doi: 10.1109/TAES.2016.140152. LIU W, LIU J, WANG L, et al. Adaptive array detection in noise and completely unknown jamming[J]. Digital Signal Processing, 2015, 46: 41-48. doi: 10.1016/j.dsp.2015.07.006. LIU W, LIU J, HU X, et al. Statistical performance analysis of the adaptive orthogonal rejection detector[J]. IEEE Signal Processing Letters, 2016, 23(6): 873-877. doi: 10.1109/LSP. 2016.2550495. AKAKAYA M and NEHORAI A. MIMO radar sensitivity analysis for target detection[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3241-3250. doi: 10.1109/TSP.2011. 2141665. WANG P, LI H, and HIMED B. Moving target detection for distributed MIMO radar with imperfect waveform separation [C]. IEEE National Radar Conferences, Ottawa, Canada, 2013: 1-5. doi: 10.1109/RADAR.2013.6586004. AUBRY A, DE Maio A, FOGLIA G, et al. Diffuse multipath exploitation for adaptive radar detection[J]. IEEE Transactions on Signal Processing, 2015, 63(5): 1268-1281. doi: 10.1109/TSP.2014.2388439. WANG P, FANG J, LI H, et al. Detection with target-induced subspace interference[J]. IEEE Signal Processing Letters, 2012, 19(7): 403-406. doi: 10.1109/LSP. 2012.2197389. GINI F and FARINA A. Matched subspace cfar detection of hovering helicopters[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(4): 1293-1305. doi: 10.1109/ 7.805446. LEI S, ZHAO Z, NIE Z, et al. Adaptive polarimetric detection method for target in partially homogeneous background[J]. Signal Processing, 2015, 106: 301-311. doi: 10.1016/j.sigpro.2014.07.019. LIU W, WANG Y, and XIE W. Fisher information matrix, Rao test, and Wald test for complex-valued signals and their applications[J]. Signal Processing, 2014, 94: 1-5. doi: 10.1016/j.sigpro.2013.06.032. TAGUE J A and CALDWELL C I. Expectations of useful complex Wishart forms[J]. Multidimensional Systems and Signal Processing, 1994, 5(3): 263-279. doi: 10.1007/ BF00980709. -
計量
- 文章訪問數(shù): 1370
- HTML全文瀏覽量: 166
- PDF下載量: 239
- 被引次數(shù): 0