一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于t分布擴展概率主成分分析模型的一維距離像識別方法

李彬 李輝 郭淞云

李彬, 李輝, 郭淞云. 基于t分布擴展概率主成分分析模型的一維距離像識別方法[J]. 電子與信息學報, 2017, 39(8): 1857-1864. doi: 10.11999/JEIT161220
引用本文: 李彬, 李輝, 郭淞云. 基于t分布擴展概率主成分分析模型的一維距離像識別方法[J]. 電子與信息學報, 2017, 39(8): 1857-1864. doi: 10.11999/JEIT161220
LI Bin, LI Hui, GUO Songyun. Using t-distribution Based Probabilistic Principal Component Analysis Model for High Resolution Range Profile Recognition[J]. Journal of Electronics & Information Technology, 2017, 39(8): 1857-1864. doi: 10.11999/JEIT161220
Citation: LI Bin, LI Hui, GUO Songyun. Using t-distribution Based Probabilistic Principal Component Analysis Model for High Resolution Range Profile Recognition[J]. Journal of Electronics & Information Technology, 2017, 39(8): 1857-1864. doi: 10.11999/JEIT161220

基于t分布擴展概率主成分分析模型的一維距離像識別方法

doi: 10.11999/JEIT161220
基金項目: 

國家自然科學基金(61571364),西北工業(yè)大學研究生創(chuàng)意創(chuàng)新種子基金(Z2017022)

Using t-distribution Based Probabilistic Principal Component Analysis Model for High Resolution Range Profile Recognition

Funds: 

The National Natural Science Foundation of China (61571364), The Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Poly-technical University (Z2017022)

  • 摘要: 該文針對概率主成分分析(PPCA)模型用于1維高分辨距離像(HRRP)識別對噪聲敏感的問題,對經(jīng)典PPCA模型進行修正。該方法將基于高斯分布的PPCA模型擴展為基于t分布的PPCA模型,能夠綜合利用t分布對噪聲穩(wěn)健和PPCA模型自由參數(shù)少的特性。同時為了減少目標方位敏感性對HRRP統(tǒng)計建模的影響,進一步將t分布模型擴展為混合概率t分布模型,能夠以分布趨同的原則將不同方位幀內(nèi)具有相同統(tǒng)計特性的HRRP數(shù)據(jù)進行聚類,減少模型的失配,改善識別性能。模型參數(shù)通過期望最大值(EM)算法估計,可提高計算效率。最后,通過貝葉斯規(guī)則,以獲取的統(tǒng)計特征識別測試數(shù)據(jù),仿真結(jié)果表明該方法能夠提高低信噪比條件下PPCA模型的穩(wěn)健性。
  • LIU Hongwei, CHEN Bo, FENG B, et al. Radar high- resolution range profiles target recognition based on stable dictionary learning[J]. IET Radar, Sonar Navigation, 2016, 10(2): 228-237. doi: 10.1049/iet-rsn.2015.0007.
    ZHOU Daiying. Radar target HRRP recognition based on reconstructive and discriminative dictionary learning[J]. Signal Processing, 2016, 126: 52-64. doi: 10.1016/j.sigpro. 2015.12.006.
    PAN Xiaoyi, WANG Wei, FENG D, et al. Signature extraction from rotating targets based on a fraction of HRRPs[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(2): 585-592. doi: 10.1109/TAP.2014.2379955.
    PAN Mian, JIANG Jie, LI Zhu, et al. Radar HRRP recognition based on discriminant deep auto-encoders with small training data size[J]. Electronics Letters, 2016, 52(20): 1725-1727. doi: 10.1049/el.2016.3060.
    DU L, HE H, ZHAO L, et al. Noise robust radar HRRP target recognition based on scatter matching algorithm[J]. IEEE Sensors Journal, 2016, 16(6): 1743-1753. doi: 10.1109/JSEN. 2015.2501850.
    LUNDAN J and KOIVUNEN V. Deep learning for HRRP- based target recognition in multi-static radar systems[C]. IEEE Radar Conference, Philadelphia, PA, 2016. doi: 10.1109 /RADAR.2016.7485271.
    JACOB S P and OSULLIVAN J A. Automatic target recognition using sequences of high resolution radar range- profiles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 364-381. doi: 10.1109/7.845214.
    WEBB A R. Gamma mixture models for target recognition[J]. Pattern Recognition, 2000, 33(12): 2045-2054. doi: 10.1016/ S0031-3203(99)00195-8.
    COPSEY K D and WEBB A R. Bayesian gamma mixture model approach to radar target recognition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1201-1217. doi: 10.1109/TAES.2003.1261122.
    DU L, LIU H, BAO Z, et al. A two-distribution compounded statistical model for Radar HRRP target recognition[J]. IEEE Transactions on Signal Processing, 2006, 54(6): 2226-2238. doi: 10.1109/TSP.2006.873534.
    WANG Caiyun and XIE Jiling. Radar high resolution range profile target recognition based on t-mixture model[C]. IEEE Radar Conference, Kansas, 2011: 762-767. doi: 10.1109/ RADAR.2011.5960640.
    DU L, LIU H, BAO Z, et al. Radar HRRP statistical recognition: Parametric model and model selection[J]. IEEE Transactions on Signal Processing, 2008, 56(5): 1931-1944. doi: 10.1109/TSP.2007.912283.
    LIU Hongwei, DU Lan, WANG Penghui, et al. Radar HRRP automatic target recognition: Algorithms and applications[C]. Proceedings of IEEE CIE International Conference on Radar, Chengdu, 2011: 14-17. doi: 10.1109/CIE-Radar.2011. 6159709.
    王鵬輝, 杜蘭, 劉宏偉, 等. 雷達高分辨距離像分幀新方法[J].西安電子科技大學學報, 2011, 38(6): 22-29. doi: 10.3969 /j.issn.1001-2400.2011.06.004.
    WANG P H, DU L, LIU H W, et al. New frame segmentation method for radar HRRPs[J]. Journal of Xidian University, 2011, 38(6): 22-29. doi: 10.3969/j.issn.1001-2400.2011.06. 004.
    王鵬輝, 杜蘭, 劉宏偉. 基于復高斯模型的雷達高分辨距離像目標識別新方法[J]. 光學學報, 2014, 34(2): 1-10. doi: 10.3788 /AOS201434.0228004.
    WANG P H, DU L, and LIU H W. A new method based on complex Gaussian models for radar high resolution range profile target recognition[J]. Acta Optica Sinica, 2014, 34(2): 1-10. doi: 10.3788/AOS201434.0228004.
    CHEN T, MARTIN E B, MONTAGUE G A, et al. Robust probabilistic PCA with missing data and contribution analysis for outlier detection[J]. Computational Statistics Data Analysis, 2009, 53(10): 3706-3716. doi: 10.1016/j.csda. 2009.03.014.
    LANGE K L, LITTLE R J, TAYLOR J M, et al. Robust statistical modeling using the t distribution[J]. Journal of the American Statistical Association, 2012, 84(408): 881-896. doi: 10.1080/01621459.1989.10478852.
    TIPPING M E and BISHOP C M. Probabilistic principal component analysis[J]. Journal of The Royal Statistical Society Series B Statistical Methodology, 1999, 61(3): 611-622. doi: 10.1111/1467-9868.00196.
    ZHOU X and LIU X. The EM algorithm for the extended finite mixture of the factor analyzers model[J]. Computational Statistics Data Analysis, 2008, 52(8): 3939-3953. doi: 10.1016/j.csda.2008.01.023.
    PEEL D and MCLACHLAN G J. Robust mixture modelling using the t distribution[J]. Statistics and Computing, 2000, 10(4): 339-348. doi: 10.1023/A:1008981510081.
    TIPPING M E and BISHOP C M. Mixtures of probabilistic principal component analyzers[J]. Neural Computation, 1999, 11(2): 443-482. doi: 10.1162/089976699300016728.
    ZHU D, LIU Y, HUO K, et al. A novel high-precision phase- derived-range method for direct sampling LFM radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 1131-1141. doi: 10.1109/TGRS.2015.2474144.
    但波, 姜永華, 李敬軍, 等. 雷達高分辨距離像自適應(yīng)角域劃分方法[J]. 系統(tǒng)工程與電子技術(shù), 2014, 36(11): 2178-2185. doi: 10.3969/j.issn.1001-506X.2014.11.11.
    DAN B, JIANG Y H, LI J J, et al. Adaptive angular-sector segmentation method for radar HRRP[J]. Systems Engineering and Electronics, 2014, 36(11): 2178-2185. doi: 10.3969/j.issn.1001-506X.2014.11.11.
    黃得雙. 高分辨雷達智能信號處理技術(shù)[M]. 北京: 機械工業(yè)出版社, 2001: 19-31.
    HUANG D S. Intelligent Signal Processing Technique for High Resolution Radars[M]. Beijing: China Machine Press, 2001: 19-31.
  • 加載中
計量
  • 文章訪問數(shù):  1300
  • HTML全文瀏覽量:  183
  • PDF下載量:  270
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-11-10
  • 修回日期:  2017-04-06
  • 刊出日期:  2017-08-19

目錄

    /

    返回文章
    返回