一種基于Gabor小波及互協(xié)方差降維運算的人臉識別方法
doi: 10.11999/JEIT161103
-
1.
(燕山大學工業(yè)計算機控制工程河北省重點實驗室 秦皇島 066004) ②(東北大學信息科學與工程學院 沈陽 110819)
基金項目:
河北省自然科學基金(F2015203212)
Face Recognition Method Using Gabor Wavelet and Cross-covariance Dimensionality Reduction
-
1.
(Key Lab of Industrial Computer Control Engineering of Hebei Province, Yanshan University, Qinhuangdao 066004, China)
Funds:
The Natural Science Foundation of Hebei Province (F2015203212)
-
摘要: 針對傳統(tǒng)的人臉識別方法對人臉圖像的曝光量、表情比較敏感,并且具有較大類內(nèi)離散度的缺點,該文提出一種基于Gabor小波以及加權(quán)互協(xié)方差運算的人臉識別算法。該算法首先對人臉圖像提取Gabor特征,然后使用加權(quán)的互協(xié)方差矩陣對經(jīng)過處理的特征圖像進行降維及特征提取;最后使用最近鄰分類器進行分類。在ORL數(shù)據(jù)庫和AR數(shù)據(jù)庫上的實驗表明,該方法的降維和識別性能優(yōu)于傳統(tǒng)2DPCA及其改進算法,能兼顧維度簡約性和準確性,有效地提高了識別性能。
-
關鍵詞:
- 人臉識別 /
- Gabor小波 /
- 2維主成分分析 /
- 互協(xié)方差矩陣
Abstract: The traditional face recognition is sensitive to light condition as well as facial expression, and has a shortcoming of high intra-group dispersion, a novel method is proposed to overcome these defects by combining Gabor wavelet and a weighted computation based on the cross-covariance. Firstly, Gabor features are extracted from the face image. Then, a weighted cross-covariance matrix is used for dimension reduction and feature extraction. Finally, the nearest neighbor classifier is performed for classification. Experimental results on the ORL face database and the AR face database show that the recognition performance of the proposed method is superior over the 2DPCA and its improved algorithm. It also reduces the dimensionality of feature and improves the recognition performance effectively. -
KAMARUZAMAN F and SHAFIE A A. Optimization of real-time Gabor-based face recognition[C]. IEEE International Symposium on Robotics and Intelligent Sensors, Langkawi, Malaysia, 2015: 301-306. doi: 10.1109/IRIS.2015. 7451629. DOSODIA P, POONIA A, GUPTA S K, et al. New Gabor- DCT feature extraction technique for facial expression recognition[C]. International Conference on Communication Systems Network Technologies, Gwalior, India, 2015: 546-549. doi: 10.1109/CSNT.2015.162. YANG Jian, ZHANG David, FRANGI A F, et al. Two- dimensional PCA: A new approach to appearance-based face representation and recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1): 131-137. doi: 10.1109/TPAMI.2004.1261097. ZHANG Daoqiang and ZHOU Zhihua. (2D)2PCA: Two- directional two-dimensional PCA for efficient face representation and recognition[J]. Neurocomputing, 2005, 69(1-3): 224-231. doi: 10.1016/j.neucom.2005.06.004. ZHANG Daoqiang, ZHOU Zhihua, and CHEN Songcan. Rapid and brief communication: Diagonal principal component analysis for face recognition[J]. Pattern Recognition, 2006, 39(1): 140-142. doi: 10.1016/j.patrec.2005. 08.002. 曾岳, 馮大政. 一種基于加權(quán)變形的2DPCA的人臉特征提取方法[J]. 電子與信息學報, 2011, 33(4): 769-774. doi: 10.3724/ SP.J.1146.2010.01003. ZENG Yue and FENG Dazheng. An algorithm of feature extraction of face based on the weighted variation of 2DPCA[J]. Journal of Electronics Information Technology, 2011, 33(4): 769-774. doi: 10.3724/SP.J.1146.2010.01003. 曹明明, 干宗良, 崔子冠, 等. 基于2D-PCA特征描述的非負權(quán)重鄰域嵌入人臉超分辨率重建算法[J]. 電子與信息學報, 2015, 37(4): 777-783. doi: 10.11999/JEIT140739. CAO Mingming, GAN Zongliang, CUI Ziguan, et al. Novel neighbor embedding face hallucination based on non-negative weights and 2D-PCA feature[J]. Journal of Electronics Information Technology, 2015, 37(4): 777-783. doi: 10.11999/ JEIT140739. JEONG D, LEE M, and BAN S W. (2D)2PCA-ICA: A new approach for face representation and recognition[C]. IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, 2009: 1792-1797. doi: 10.1109/ ICSMC.2009.5346886. CAMENT L A, GALDAMES F J, BOWYER K W, et al. Face recognition under pose variation with active shape model to adjust Gabor filter kernels and to correct feature extraction location[C]. International Conference on Automatic Face and Gesture Recognition, Slovenia, Yugoslavia, 2015: 1-6. doi: 10.1109/FG.2015.7163139. SAFAYANI M, SHALMANI M T M, and KHADEMI M. Extended two-dimensional PCA for efficient face representation and recognition[C]. International Conference on Intelligent Computer Communication and Processing, Cluj-Napoca, Romania, 2008: 295-298. doi: 10.1109/ICCP. 2008.4648390. GAO Yongxin, LI X R, and SONG Enbin. Robust linear estimation fusion with allowable unknown cross- covariance[C]. International Conference on Information Fusion, Salamanca, Spain, 2014: 1-12. doi: 10.1109/TSMC. 2015.2487882. SRINIVASAN M. Using Bayesian statistics and Gabor wavelets for recognition of human faces[C]. Eighth International Conference on Advances in Pattern Recognition, Kolkata, India, 2015: 1-6. doi: 10.1109/ICAPR.2015. 7050658. -
計量
- 文章訪問數(shù): 1306
- HTML全文瀏覽量: 125
- PDF下載量: 371
- 被引次數(shù): 0