一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

小波域基于分段Hurst指數(shù)的視頻流分類

湯萍萍 董育寧

湯萍萍, 董育寧. 小波域基于分段Hurst指數(shù)的視頻流分類[J]. 電子與信息學報, 2017, 39(6): 1298-1304. doi: 10.11999/JEIT160745
引用本文: 湯萍萍, 董育寧. 小波域基于分段Hurst指數(shù)的視頻流分類[J]. 電子與信息學報, 2017, 39(6): 1298-1304. doi: 10.11999/JEIT160745
TANG Pingping, DONG Yuning. Classifying Video Flows Based on Segmented Hurst Exponent in Wavelet Domain[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1298-1304. doi: 10.11999/JEIT160745
Citation: TANG Pingping, DONG Yuning. Classifying Video Flows Based on Segmented Hurst Exponent in Wavelet Domain[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1298-1304. doi: 10.11999/JEIT160745

小波域基于分段Hurst指數(shù)的視頻流分類

doi: 10.11999/JEIT160745
基金項目: 

國家自然科學基金(61271233, 60972038, 61401004),華為HIRP創(chuàng)新項目

Classifying Video Flows Based on Segmented Hurst Exponent in Wavelet Domain

Funds: 

The National Natural Science Foundation of China (61271233, 60972038, 61401004), Huawei Innovation Research Program (HIRP)

  • 摘要: 現(xiàn)有的視頻流分類方法體現(xiàn)出內(nèi)容依賴及特征依賴的局限性,該文引入流量分形理論,并在小波域內(nèi),提出一種基于Hurst指數(shù)的Fractals分類模型以改進不足。為此,該文首先描述流的分形性質,定義流的Hurst指數(shù),推導小波域內(nèi)Hurst指數(shù)的估計過程。然后,基于代價函數(shù)優(yōu)化分段目標,用聚類差異度方法計算分段Hurst指數(shù)的總體差異量,再基于最大類間方差閾值進行分析,從而實現(xiàn)視頻流的細粒度分類。研究結果表明,該文提出的分類方法,以隨機數(shù)據(jù)的變化特性為內(nèi)容,突破了內(nèi)容依賴的局限性,解決了特征制約的瓶頸,提高了視頻流的分類效果。
  • QAHHAR Muhammad Qadir. Mechanisms for QoE optimisation of video traffic: A review paper[J]. Analytical Biochemistry, 2015, 1(1): 40-42. doi: 10.17972/ajicta2015117.
    KHAN N and MARTINI M G. Hysteresis based rate adaptation for scalable video traffic over an LTE downlink[C]. IEEE International Conference on Communication Workshop, London, UK, 2015: 1434-1439. doi: 10.1109/ICCW.2015. 7247380.
    WANG Zaijian, DONG Yuning, SHI Haixian, et al. Internet video traffic classification using QoS features[C]. IEEE International Conference on Computing, Networking and Communications, Kauai, HI, USA, 2016: 1-5. doi: 10.1109/ ICCNC. 2016.7440599.
    MOHD A B and NOR S B M. Towards a flow-based internet traffic classification for bandwidth optimization[J]. International Journal of Computer Science Security, 2014, 3(2): 146-153.
    BARAKAT C, THIRAN P, IANNACCONE G, et al. Modeling internet backbone traffic at the flow level[J]. IEEE Transactions on Signal Processing Special Issue on Networking, 2003, 51(8): 2111-2124. doi: 10.1109/TSP.2003.814521.
    LI W and YU X. An online flow-level packet classification method on multi-core network processor[C]. IEEE International Conference on Computational Intelligence and Security, Shenzhen, China 2015: 407-411. doi: 10.1109/CIS. 2015.104.
    ZHANG D, ZHOU D, and JIN X. A content-adaptive video quality assessment method for online media service[J]. Multimedia Tools Applications, 2016: 1-21. doi: 10.1007/ s11042-016-3359-5.
    SUN S B and CUI R Y. Player classification algorithm based on digraph in soccer video[C]. IEEE Conference on Information Technology and Artificial Intelligence, Chongqing, China, 2014: 459-463. doi: 10.1109/ITAIC.2014.7065092.
    LIM J D, LEE C H, CHOI B C, et al. Implementation of automatic x-rated video classification and management system based on multimodal features[J]. International Journal of Advancements in Computing Technology, 2012, 4(23): 178-186. doi: 10.4156/ijact.vol4.issue23.21.
    YU J, WANG M, and TAO D. Semisupervised multiview distance metric learning for cartoon synthesis[J]. IEEE Transactions on Image Processing, 2012, 21(11): 4636-4648. doi: 10.1109/TIP.2012.2207395.
    NG Y H, HAUSKNECHT M, VIJAYANARASIMHAN S, et al. Beyond short snippets: Deep networks for video classification[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015: 4694-4702. doi: 10.1109/CVPR.2015.7299101.
    JENNINGS C, PETERSON J, TERRIBERRY T, et al. Multiplexing of real-time transport protocol (RTP) traffic for browser based real-time communications (RTC)[J]. Communications and Informatics, 2011, 24 (6): 1-28.
    ZENG C and CHEN J. Analysis and design based on DPI streaming media of traffic detection system[J]. Video Engineering, 2014, 36(5): 94-102.
    KHEIR N, HAN X, and WOLLEY C. Behavioral fine-grained detection and classification of P2P bots[J]. Journal of Computer Virology Hacking Techniques, 2015, 11(4): 217-233. doi: 10.1007/s11416-014-0228-5.
    WU Z, JIANG Y G, WANG J, et al. Exploring inter-feature and inter-class relationships with deep neural networks for video classification[C]. Proceedings of the ACM International Conference on Multimedia, Chengdu, China, 2014: 1-6. doi: 10.1109/ICMEW.2014.6890609.
    KARPATHY A, TODERICI G, SHETTY S, et al. Large-scale video classification with convolutional neural Networks[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014: 1725-1732. doi: 10.1109/CVPR.2014.223.
    NOSSENSON R and POLACHECK S. On-line flows classification of video streaming applications[C]. IEEE International Symposium on Network Computing and Applications, Cambridge, MA, USA, 2015: 251-258. doi: 10.1109/NCA.2015.51.
    GANDHI V R, QU Y R, and PRASANNA V K. High-throughput hash-based online traffic classification engines on FPGA[C]. IEEE International Conference on Reconfigurable Computing and FPGAs, Cancun, Mexico, 2015: 1-6. doi: 10.1109/ReConFig.2014.7032530.
    MANE A S and KAMDE P M. Video classification using SVM[J]. International Journal of Recent Technology Engineering, 2013, 2(3): 34-47.
    LELAND W E, TAQQU M S, Willinger W, et al. On the self-similar nature of Ethernet traffic (extended version)[J]. IEEE/ACM Transactions on Networking, 1994, 2(1): 1-15. doi: 10.1109/90.282603.
    HE H, WANG J, WEI H, et al. Fractal behavior of traffic volume on urban expressway through adaptive fractal analysis[J]. Physica A Statistical Mechanics Its Applications, 2015, 443(7): 518-525.
    ALVAREZRAMIREZ J, IBARRAVALDEZ C, and RODRIGUEZ E. Fractal analysis of Jackson Pollock's painting evolution[J]. Chaos Solitons Fractals, 2016, 83(1): 97-104. doi: 10.1016/j.chaos.2015.11.034.
  • 加載中
計量
  • 文章訪問數(shù):  1088
  • HTML全文瀏覽量:  104
  • PDF下載量:  219
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-07-14
  • 修回日期:  2017-03-01
  • 刊出日期:  2017-06-19

目錄

    /

    返回文章
    返回