Attitude Estimation for Space Satellite Targets with Multistatic ISAR Systems
Funds:
The National Natural Science Foundation of China (61301280, 61301293)
-
摘要: 該文提出一種基于多站逆合成孔徑雷達(ISAR)序列成像的空間目標姿態(tài)估計方法。方法提取各幀ISAR圖像中目標的典型線性結構,結合目標軌道信息實現(xiàn)關鍵部件姿態(tài)估計。該文建立了較為穩(wěn)健的空間目標ISAR幾何結構分析流程,采用Radon變換對太陽能翼、平板天線等線性結構進行提取和關聯(lián),繼而估計典型線性結構在距離-多普勒成像平面的姿態(tài)角變化,同時利用衛(wèi)星軌道信息獲得ISAR距離-多普勒投影矩陣進行線性結構的3維姿態(tài)解算,最終實現(xiàn)典型部件姿態(tài)的優(yōu)化求解估計。仿真實驗驗證了所提算法可有效實現(xiàn)空間目標典型部件的姿態(tài)估計,同時利用多站ISAR觀測數(shù)據(jù)可有效提升算法的估計精度。Abstract: A new method for attitude estimation for space satellite targets is presented by extracting typical linear structures in ISAR imaging sequence and using information of targets position in orbits to analyze the three-dimensional attitude of space satellite targets. With the analyzing process for space satellite targets geometric structures, the algorithm utilizes Radon transformation to realize the extraction of linear structures, like solar wings, planar antennas, in ISAR imaging sequences. After finishing the relevance of these linear structures among different frames, the angle information of typical linear structures in range-Doppler plane is extracted. At last, with targets position information in orbits, a matrix sequence of the ISAR range-Doppler projection is acquired to estimate the three-dimensional attitude of linear structures, and realize exact solution of space satellite targets attitude. The simulation experiment result illustrates that the algorithm can realize the attitude estimation of typical units in space satellite targets, and the multistatic model algorithm shows its advantage in estimation accuracy.
-
LEFFERTS E J, MARKLEY F L, and SHUSTER M D. Kalman filtering for spacecraft attitude estimation[J]. Journal of Guidance, Control and Dynamics, 1982, 5(5): 417-429. 徐少坤, 劉記紅, 袁翔宇, 等. 基于 ISAR 圖像的中段目標二維幾何特征反演方法[J]. 電子與信息學報, 2015, 37(2): 339-345. doi: 10.11999/JEIT140338. XU Shaokun, LIU Jihong, YUAN Xiangyu, et al. Two dimensional geometric feature inversion method for midcourse target based on ISAR image[J]. Journal of Electronics Information Technology, 2015 37(2): 339-345. doi: 10.11999/JEIT140338. 魏小峰, 耿則勛, 婁博, 等. 空間目標三維姿態(tài)估計[J]. 武漢大學學報, 2015, 40(1): 96-101. doi: 10.13203/j.whugis2013 0156. WEI Xiaofeng, GEN Zexu, LOU Bo, et al. A 3D pose estimation method for space object[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 96-101. doi: 10.13203/j.whugis20130156. ZHONG W J, JI J S, LEI X, et al. The attitude estimation of three-axis stabilized satellites using hybrid particle swarm optimization combined with radar cross section precise prediction[J]. Institution of Mechanical Engineers, 2015, 8: 1-13. doi: 10.1177/0954410015596178. LEMMENS S, KRAG H, ROSEBROCK J, et al. Radar mappings for attitude analysis of objects in orbit[C]. Proceedings of the 6th European Conference on Space Debris, Darmstadt, Germany, 2013: 20-24. ZHU D Q and CHU C C. Characterization of irregularly shaped bodies[C]. International Society for Optics and Photonics, USA, 1995: 17-22. doi: 10.1117/12.211501. 郭裕蘭, 萬建偉, 魯敏, 等. 激光雷達目標三維姿態(tài)估計[J]. 光學精密工程, 2012 20(4): 843-850. doi: 10.3788/OPE. 20122004.0843. GUO Yulan, WAN Jianwei, LU Min, et al. Three dimensional orientation estimation for ladar target[J]. Optics and Precision Engineering, 2012 20(4): 843-850. doi: 10.3788/ OPE.20122004.0843. TOMASI C and KANADE T. Shape and motion from image streams: A factorization method[J]. Proceedings of the National Academy of Sciences of USA, 1993, 90(21): 9795- 9802. doi: 10.1007/BF00129684. ROSEBROCK J. Absolute attitude from monostatic Radar measurements of rotating objects[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3737-3744. doi: 10.1109/TGRS.2011.2159727. 寧夏, 葉春茂, 楊健, 等. 空間目標雷達觀測視角變化率及其應用[J]. 清華大學學報(自然科學版), 2013 53(11): 1558-1564. doi: 10. 16511/j.cnki.qhdxxb. 2013.11.008. NING Xia, YE Chunmao, YANG Jian, et al. Radar aspect angle rate-of-change with respect to space target and its application[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(11): 1558-1564. doi: 10.16511/j.cnki. qhdxxb.2013.11.008. MAYHAN J T, BURROWS M L, CUOMO K M, et al. High resolution 3D Snapshot ISAR imaging and feature extraction[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 630-642. doi: 10.1109/ 7.937474. 保錚, 邢孟道, 王彤. 雷達成像技術[M]. 北京: 電子工業(yè)出版社, 2005: 231-241. BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Technology[M]. Beijing: Publishing House of Electronics Industry, 2005: 231-241. ELHABIAN S Y, ELSAYED K M, and AHMED S H. Moving object detection in spatial domain using background removal techniques-state-of-art[J]. Recent Patents on Computer Science, 2008, 1(1): 32-54. doi: 10.2174/1874479610801010032. RAFAEL C G and RICHARD E W. Digital Image Processing [M]. Third Edition. Beijing: Publishing House of Electronics Industry, 2007: 432-435. 劉艷莉, 桂志國. 基于形態(tài)學的可變權值匹配自適應圖像增強算法[J].電子與信息學報, 2014, 36(6): 1285-1291. doi: 10.3724/SP.J.1146.2013.01082. LIU Yanli and GUI Zhiguo. Adaptive image enhancement algorithm with variable weighted matching based on morphology[J]. Journal of Electronics Information Technology, 2014, 36(6): 1285-1291. doi: 10.3724/SP.J.1146. 2013.01082. 陳伯孝, 朱旭花, 張守宏. 運動平臺上多基地雷達時間同步技術[J]. 系統(tǒng)工程與電子技術, 2005, 27(10): 1734-1737. doi: 10. 3321/j.issn:1001-506X.2005.10.020. CHEN Boxiao, ZHU Xuhua, and ZHANG Shouhong. Time synchronization technique of multi-station radar on moving flat[J]. Systems Engineering and Electronics, 2005, 27(10): 1734-1737. doi: 10.3321/j.issn:1001-506X.2005.10.020. 劉贊, 陳西宏, 薛倫生, 等. 雙基地雷達系統(tǒng)時間同步方案研究[J].火力與指揮控制, 2016, 41(1): 139-142. doi: 10.3969. j.issn.1002-0640.2016.01.034. LIU Zan, CHEN Xihong, XUE Lunsheng, et al. Research on schemes of the time synchronization for bistatic radar system[J]. Fire Control Command Control, 2016, 41(1): 139-142. doi: 10.3969/j.issn.1002-0640.2016.01.034. -
計量
- 文章訪問數(shù): 1366
- HTML全文瀏覽量: 208
- PDF下載量: 367
- 被引次數(shù): 0