基于貝葉斯準則的隨機共振算法研究
doi: 10.11999/JEIT160361
重慶市基礎與前沿研究(cstc2016jcyjA0134, cstc2016 jcyjA0043),國家自然科學基金(61501072, 61301224, 41404027, 61108086, 61471072),重慶市社會事業(yè)與民生保障專項(cstc2016 shmszx40002),中央高校重點基金(CDJZR155507)
Study on Stochastic Resonance Algorithm Based on Bayes Criterion
The Basic and Advanced Research Project in Chongqing (cstc2016jcyjA0134, cstc2016jcyjA0043), The National Natural Science Foundation of China (61501072, 61301224, 41404027, 61108086, 61471072), The Chongqing Social Undertaking and People,s Livelihood Guarantee Science and Technology Innovation Special Foundation (cstc2016shmszx40002), The Fundamental Research Funds for the Central Universities (CDJZR155507)
-
摘要: 該文針對二元假設檢驗問題,首先在貝葉斯準則的基礎上,分析了最小化貝葉斯代價所對應的最優(yōu)噪聲,將貝葉斯代價的最小化問題等價為虛警概率和/或檢測概率的最優(yōu)化。其次,在保證一定虛警概率和檢測概率的前提下,建立起能同時改善檢測概率和虛警概率的模型。然后分別給出當檢測概率一定時虛警概率最小和虛警概率一定時檢測概率最大這兩種極限情況下對應的最優(yōu)加性噪聲,并對其進行線性凸組合以獲得模型所需的最優(yōu)加性噪聲,進一步分析并證明了該模型能夠成立的充分條件。再次,獲得先驗概率已知和未知兩種情況下最小化貝葉斯代價時所對應的加性噪聲,且當先驗知識發(fā)生改變時,該算法只需調(diào)整加性噪聲中一個可變參數(shù)即可獲得相應的最優(yōu)貝葉斯代價。最后,結合具體的檢測問題,通過仿真驗證了所提算法的有效性。Abstract: The optimal noise that minimizes Bayes risk for a binary hypothesis testing problem is analyzed firstly. As a result, the minimization of Bayes risk can be equivalent as the optimization of the detection probability and/or false alarm probability . Secondly, a noise enhanced model, which can increase and decrease simultaneously, is established under the premise of maintaining predefined and . Then the optimal additional noise of this model is obtained by a convex combination of two optimal noises of two limit cases, which are the minimization of with maintaining the predefined and the maximization of with maintaining the predefined , respectively. Furthermore, the sufficient conditions for this model are given. Whats more, the additive noise that minimizes the Bayes risk is determined when the prior probabilities are known or not, and the corresponding additive noise can be obtained by recalculating a parameter only if the prior information changes. Finally, the availability of algorithm is proved through the simulation combined with a specific detection example.
-
Key words:
- Signal processing /
- Bayes criterion /
- Noise enhanced model /
- Additive noise /
- Hypothesis testing
-
COHEN L. The history of noise[J]. IEEE Signal Processing Magazine, 2005, 22(6): 20-45. doi: 10.1109/MSP.2005. 1550188. BENZI R, SUTERA A, and VULPIANI A. The mechanism of stochastic resonance[J]. Journal of Physics A: Mathematical General, 1981, 14(11): L453-L457. doi: 10.1088 /0305-4470/14/11/006. 張雷, 宋愛國. 隨機共振在信號處理中應用研究的回顧與展望[J]. 電子學報, 2009, 37(4): 811-818. doi: 10.3321/j.issn: 0372-2112.2009.04.025. ZHANG Lei and SONG Aiguo. Development and prospect of stochastic resonance in signal processing[J]. Acta Electronica Sinica, 2009, 37(4): 811-818. doi: 10.3321/j.issn:0372-2112. 2009.04.025. ADDESSOA P, PIERROB V, and FILATRELLA G. Interplay between detection strategies and stochastic resonance properties[J]. Communications in Nonlinear Science Numerical Simulation, 2015, 30(1/3): 15-31. doi: 10.1016/j.cnsns.2015.05.026. YU Haitao, GUO Xinmeng, WANG Jiang, et al. Adaptive stochastic resonance inself-organized small-world neuronal networks with time delay[J]. Communications in Nonlinear Science Numerical Simulation, 2015, 29(1/3): 346-358. doi: 10.1016/j.cnsns.2015.05.017. 張海濱, 何清波, 孔凡讓. 基于變參數(shù)隨機共振和歸一化變換的時變信號檢測與恢復[J]. 電子與信息學報, 2015, 37(9): 2124-2131. doi: 10.11999/JEIT141618. ZHANG Haibin, HE Qingbo, and KONG Fanrang. Time-varying signal detection and recovery method based on varying parameter stochastic resonance and normalization transformation[J]. Journal of Electronics Information Technology, 2015, 37(9): 2124-2131. doi: 10.11999/ JEIT141618. 侯成郭, 羅柏文, 李地. 線性調(diào)頻信號的級聯(lián)隨機共振數(shù)字化接收[J]. 電子與信息學報, 2015, 37(12): 2866-2871. doi: 10.11999/JEIT141496. HOU Chengguo, LUO Bowen, and Li Di. Cascaded stochastic resonance for digitized receiving of linear frequency modulation signal[J]. Journal of Electronics Information Technology, 2015, 37(12): 2866-2871. doi: 10.11999/ JEIT141496. CHEN Hao, VARSHNEY L R, and VARSHNEY P K. Noise-enhanced information systems[J]. Proceeding of the IEEE, 2014, 102(10): 1607-1621. doi: 10.1109/JPROC.2014. 2341554. LIU Shujun, YANG Ting, and ZHANG Xinzheng. Effects of stochastic resonance for linearquadratic detector[J]. Chaos, Solitons Fractals, 2015, 77(1): 319-331. doi: 10.1016/j. chaos.2015.06.015. LU Zeqi, CHEN Liqun, MICHAEL J B, et al. Stochastic resonance in a nonlinear mechanical vibration isolation system[J]. Journal of Sound Vibration, 2016, 370: 221-229. doi: 10.1016/j.jsv.2016.01.042. 鄧冬虎, 朱小鵬, 張群, 等. 基于隨機共振理論的雙基ISAR 弱信號提取及成像分析[J]. 電子學報, 2012, 40(9): 1809-1816. doi: 10.3969/j.issn.0372-2112.2012.09.017. DENG Donghu, ZHU Xiaopeng, ZHANG Qun, et al. Weak signals extraction and imaging analysis in bistatic ISAR systems based on stochastic resonance[J]. Acta Electronica Sinica, 2012, 40(9): 1809-1816. doi: 10.3969/j.issn.0372-2112. 2012.09.017. MITAIM S and KOSKO B. Adaptive stochastic resonance in noisy neurons based on mutual information[J]. IEEE Transactions on Neural Networks, 2004, 15(6): 1526-1540. doi: 10.1109/TNN.2004.826218. 高銳, 李贊, 吳利平, 等. 低信噪比條件下基于隨機共振的感知方法與性能分析[J]. 電子學報, 2013, 41(9): 1672-1679. doi: 10.3969/j.issn.0372-2112.2013.09.002. GAO Rui, LI Zan, WU Liping, et al. A spectrum sensing method and performance analysis based on stochastic resonance under low SNR[J]. Acta Electronica Sinica, 2013, 41(9): 1672-1679. doi: 10.3969/j.issn.0372-2112.2013.09.002. KAY S M, MICHELS J H, CHEN Hao, et al. Reducing probability of decision error using stochastic resonance[J]. IEEE Signal Processing Letters, 2009, 13(11): 695-698. doi: 10.1109/LSP.2006.879455. CHEN Hao, VARSHNEY P K, KAY S M, et al. Theory of the stochastic resonance effect in signal detection: Part I Fixed detectors[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3172-3184. doi: 10.1109/TSP.2007.893757. BAYRAM S, GEZICI S, and VINCENT P H. Noise enhanced hypothesis-testing in the restricted Bayesian framework[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 3972-3989. doi: 10.1109/TSP.2010.2048107. BAYRAM S and GEZICI S. Noise enhanced M-ary hypothesis-testing in the Minimax framework[C]. The 3rd International Conference on Signal Processing Communication Systems (ICSPCS), Omaha, NE, USA, 2009: 16. doi: 10.1109/ICSPCS.2009.5306400. 盛驟, 謝式千, 潘承毅. 概率論與數(shù)理統(tǒng)計[M]. 北京: 高等教育出版社, 2010: 7677. SHENG Zhou, XIE Shiqian, and PAN Chengyi. Probability and Statistics[M]. Beijing: Higher Education Press, 2010: 7677. -
計量
- 文章訪問數(shù): 1293
- HTML全文瀏覽量: 129
- PDF下載量: 459
- 被引次數(shù): 0