超聲傳輸時間法頸動脈脈搏波速估計精度及影響因素研究
doi: 10.11999/JEIT160306
-
1.
(云南大學信息學院 昆明 650091) ②(昆明醫(yī)科大學第三附屬醫(yī)院 昆明 650031)
國家自然科學基金(61261007, 61561049),云南省自然科學基金(2013FA008)
Accurate Performance and Associated Influence Factors for Pulse Wave Velocity Measurement of Carotid Arteries Based on Ultrasonic Transit Time Method
-
1.
(Information School, Yunnan University, Kunming 650091, China)
-
2.
(The Third Affiliated Hospital of Kunming Medical University, Kunming 650031, China)
The National Natural Science Foundation of China (61261007, 61561049 ), The Natural Science Foundation of Yunnan Province (2013FA008)
-
摘要: 該文基于傳播模型定量分析了超聲傳輸時間法檢測局部脈搏波速(PWV)過程中掃描幀頻與聲束數(shù)對脈動位移曲線估計、延遲時間估計及PWV擬合的估計精度,采用方差分析確定了誤差顯著性和影響因素的主次關系。結果表明,脈動位移相對誤差在0.23~0.28之間,幀頻對其估計精度影響不顯著( p0.05);延遲時間估計同時受聲束對距離和幀頻的影響(p0.01 ),聲束對間距從2.38 mm 增大到 38 mm , 平均相對誤差由0.99減至0.06;幀頻從1127 Hz 減小為226 Hz,平均相對誤差由0.19 增至 0.43; PWV擬合受聲束數(shù)及幀頻的共同影響,聲束數(shù)不小于10時,估計誤差為7%~20%,幀頻為主要影響因素(p0.01 )。因此,在保證合理聲束數(shù)條件下,提高幀頻可改善PWV的估計精度。結果有助于為后續(xù)PWV檢測精度的改進研究提供依據。Abstract: The estimation accuracy of the wall displacement, delay time, and linear-regression-based Pulse Wave Velocity (PWV) affected by different scanning frame rates and beam density is investigated quantitatively in the measurement of the regional PWV with ultrasound transit time method based on a model of pulse wave propagation along a carotid artery segment. Through statistical variance analysis, the significance levels of measurement errors as well as the primary and secondary relations of these two influence factors are ascertained. The results show that the frame rates do not significantly affect the wall displacement estimation accuracy (p0.05) with relative errors ranged from 0.23 to 0.28. The delay time measurement accuracy is influenced significantly by the frame rates and spacing between two beams simultaneously (p0.01 ). The relative errors decrease from 0.99 to 0.06 as the distances from the first beam to others increase from 2.38 mm to 38 mm. However, the mean transit time errors increase from 0.19 to 0.43 when the frame rates decrease from 1127 Hz to 226 Hz. The PWV estimation errors ranging from 7% to 20% are affected significantly by the number of beams as well as frame rates under the condition that the beams used for regression fitness are no less than 10. The frame rate is the main influence factor in this situation (p0.01 ). Therefore, the PWV measurement accuracy can be improved by increasing frame rate with a proper beam setting. Experimental results could be helpful to explore novel measurement method for improving PWV accuracy in the follow-up work.
-
GULAN U, LUTHI B, HOLZNER M, et al. Experimental investigation of the influence of the aortic stiffness on hemodynamics in the ascending aorta[J]. IEEE Journal of Biomedical and Health Informatics, 2014, 18(6): 1775-1780. doi: 10.1007/s00348-012-1371-8. PETER L, FOLTYN J, and CERNY M. Pulse wave velocity measurement; developing process of new measuring device[C]. Machine Intelligence and Informatics (SAMI) 2015 IEEE 13th International Symposium, Herlany, Slovakia, 2015: 59-62. doi: 10.1109/SAMI.2015.7061846. LAURENT S, COCKCROFT J, and BORTEL L V. Expert consensus document on arterial stiffness; methodological issues and clinical applications[J]. European Heart Journal, 2006, 27(21): 2588-2605. doi: 10.1093/eurheartj/ehl254. NAGAOKA R, MASUNO G, KOBAYASHI K, et al. Measurement of regional pulse-wave velocity using spatial compound imaging of the common carotid artery in vivo[J]. Ultrasonics, 2015, 55(1): 92-103. doi: 10.1016/j.ultras.2014. 07.018. PILT K, KOOTS K, MEIGAS K, et al. The aortic pulse wave velocity estimation for arterial stiffness assessment[J]. IFMBE Proceedings, 2015, 45: 294-297. doi: 10.1007/978- 3-319-11128-5_73. RABBEN S I, STERGIOPULOS N, and HELLEVIK L R. An ultrasound-based method for determining pulse wave velocity in superficial arteries[J]. Journal of Biomechanics, 2004, 37(10): 1615-1622. doi: 10.1016/j.jbiomech.2003.12. 031. KANAI H, SATO M, KOIWA Y, et al. Transcutaneous measurement and spectrum analysis of heart wall vibrations[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1996, 43(5): 791-810. doi: 10.1109/58.535480. BRANDS J P, WILLIGERS M J, LEDOUX A L, et al. A noninvasive method to estimate pulse wave velocity in arteries locally by means of ultrasound[J]. Ultrasound in Medicine and Biology, 1998, 24(9): 1325-1335. doi: 10.1016/ S0301-5629(98)00126-4. HASEGAWA H, HONGO K, and KANAI H. Measurement of regional pulse wave velocity using very high frame rate ultrasound[J]. Journal of Medical Ultrasonics, 2012, 40(2): 91-98. doi: 10.1007/s10396-012-0400-9. SORENSEN L G, JENSEN B J, UDESEN J, et al. Pulse wave velocity in the carotid artery[C]. Proceedings of the IEEE International Ultrasonics Symposium, Beijing, China, 2008: 1386-1389. doi: 10.1109/ULTSYM.2008.0336. LUO J W, LI R X, and KONOFAGOU E E. Pulse wave imaging of the human carotid artery: an in vivo feasibility study[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2012, 59(1): 174-181. doi: 10.1109 /TUFFC.2012.2170. LUO J and KONOFAGOU E E. A fast normalized cross-correlation calculation method for motion estimation[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2010, 57(6): 1347-1357. doi: 10.1109/ TUFFC.2010.1554. JENSE J A. Speed-accuracy trade-offs in computing spatial impulse responses for simulating medical ultrasound imaging[J]. Journal of Computational Acoustics, 2001, 9(3): 731-744. doi: 10.1142/S0218396X01001248. BALOCCO S and BASSET O. 3D dynamic model of healthy and pathologic healthy and pathologic arteries for ultrasound technique evaluation[J]. American Association of Physicists in Medicine, 2008, 35(12): 5440-5449.doi: 10.1118/ 1.3006948. 蔡軼珩, 張琳琳, 盛楠, 等. 基于光度立體法的中醫(yī)舌體三維表面重建[J]. 電子與信息學報, 2015, 37(11): 2564-2570. doi: 10.11999/JEIT150124. CAI Yiheng, ZHANG Linlin, SHENG Nan, et al. 3D reconstruction of tongue surface based on photometric stereo method[J]. Journal of Electronics Information Technology, 2015, 37(11): 2564-2570. doi: 10.11999/JEIT150124. GAO L, ZHANG Y F, and LIN W J. A novel quadrature clutter rejection approach based on the multivariate empirical mode decomposition for bidirectional Doppler ultrasound signals[J]. Biomedical Signal Processing and Control, 2014, 13(13): 31-40. doi: 10.1016/j.bspc.2014.03.003. 魏子翔, 崔嵬, 李霖, 等. 一種基于最大似然估計的合作目標多維參數(shù)跟蹤算法[J]. 電子與信息學報, 2015, 37(6): 1450-1456. doi: 10.11999/JEIT141150. WEI Zixiang, CUI Wei, LI Lin, et al. Maximum likelihood estimation based algorithm for tracking cooperative target[J]. Journal of Electronics Information Technology, 2015, 37(6): 1450-1456. doi: 10.11999/JEIT141150. STADLER R, TAYLOR A, and LEES R. Comparison of B-mode, M-mode and echo-tracking methods for measurement of the arterial distension waveform[J]. Ultrasound in Medicine and Biology, 1997, 23(6): 879-887. doi: 10.1016/S0301-5629(97)00074-4. -
計量
- 文章訪問數(shù): 1477
- HTML全文瀏覽量: 466
- PDF下載量: 420
- 被引次數(shù): 0