一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

一種基于可變形部件模型的快速對象檢測算法

李春偉 于洪濤 李邵梅 卜佑軍

李春偉, 于洪濤, 李邵梅, 卜佑軍. 一種基于可變形部件模型的快速對象檢測算法[J]. 電子與信息學(xué)報, 2016, 38(11): 2864-2870. doi: 10.11999/JEIT160080
引用本文: 李春偉, 于洪濤, 李邵梅, 卜佑軍. 一種基于可變形部件模型的快速對象檢測算法[J]. 電子與信息學(xué)報, 2016, 38(11): 2864-2870. doi: 10.11999/JEIT160080
LI Chunwei, YU Hongtao, LI Shaomei, BU Youjun. Rapid Object Detection Algorithm Based on Deformable Part Models[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2864-2870. doi: 10.11999/JEIT160080
Citation: LI Chunwei, YU Hongtao, LI Shaomei, BU Youjun. Rapid Object Detection Algorithm Based on Deformable Part Models[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2864-2870. doi: 10.11999/JEIT160080

一種基于可變形部件模型的快速對象檢測算法

doi: 10.11999/JEIT160080
基金項目: 

國家自然科學(xué)基金(61572519, 61521003)

Rapid Object Detection Algorithm Based on Deformable Part Models

Funds: 

The National Natural Science Foundation of China (61572519, 61521003)

  • 摘要: 為了解決可變形部件模型檢測過程中的速度瓶頸問題,該文針對模型的檢測流程,提出一種結(jié)合快速特征金字塔計算的級聯(lián)可變形部件模型。由于模型的檢測速度主要取決于特征計算以及對象定位這兩個過程,提出一種兩階段的加速算法:首先采用尺度上稀疏采樣的特征金字塔來近似表示精細采樣的多尺度圖像特征,以加快特征計算過程;然后在定位過程中結(jié)合級聯(lián)算法,以一個序列模型順序地評估各個部件,從而快速剪除大部分可能性較小的對象假設(shè),以加快對象定位過程。在PASCAL VOC 2007和INRIA數(shù)據(jù)集上的實驗結(jié)果表明,該算法可以明顯加快檢測速度,而檢測精度僅略有下降。
  • FELZENSZWALB P, GIRSHICK R, MCALLESTER D, et al. Object detection with discriminatively trained part based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645. doi: 10.1109/TPAMI.2009.167.
    YAO Benjamin, NIE Bruce, LIU Zicheng, et al. Animated pose templates for modeling and detecting human actions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(3): 436-452. doi: 10.1109/TPAMI. 2013.144.
    WEN Jia, WANG Xueping, KONG Lingfu, et al. Using weighted part model for pedestrian detection in crowded scenes based on image segmentation[J]. Proceedings of the National Academy of Sciences, India Section A: Physical Scienes 2016, 86(1): 125-136. doi: 10.1007/s40010-015- 0231-3.
    OROZCO J, MARTINEZ B, and PANTIC M. Empirical analysis of cascade deformable models for multi-view face detection[J]. Image and Vision Computing, 2015, 42(1): 47-61. doi: 10.1016/j.imavis.2015.07.002.
    OHNBAR E and TRIVEDI M M. Learning to detect vehicles by clustering appearance patterns[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(5): 2511-2521. doi: 10.1109/TITS.2015.2409889.
    DALAL N and TRIGGS B. Histograms of oriented gradients for human detection[C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 886-893. doi: 10.1109/ CVPR.2005.177.
    FELZENSZWALB P, GIRSHICK R, and MCALLESTER D. Cascade object detection with deformable part models[C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 2241-2248. doi: 10.1109/CVPR.2010.5539906.
    PEDERSOLI M, VEDALDI A, GONZALEZ J, et al. A coarse-to-fine approach for fast deformable object detection[J]. Pattern Recognition, 2015, 48(7): 1844-1853. doi: 10.1016/j.patcog.2014.11.006.
    ZHU Menglong, ATANASOV N, PAPPAS G J, et al. Active deformable part models inference[C]. Proceedings of the 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 281-296. doi: 10.1007/978-3-319- 10584-0_19.
    KOKKINOS I. Bounding part scores for rapid detection with deformable part models[C]. Proceedings of the 12th European Conference on Computer Vision, Firenze, Italy, 2012: 41-50. doi: 10.1007/978-3-642-33885-4_5.
    LIU Qi, HUANG Zi, and HU Fuqiao. Accelerating convolution-based detection model on GPU[C]. Proceedings of the IEEE Estimation, Detection and Information Fusion, Harbin, China, 2015: 61-66. doi: 10.1109/ICEDIF.2015. 7280163.
    DUBOUT C and FLEURET F. Exact acceleration of linear object detectors[C]. Proceedings of the 12th European Conference on Computer Vision, Firenze, Italy, 2012: 301-311. doi: 10.1007/978-3-642-33712-3_22.
    YAN Junjie, LEI Zhen, WEN Longyin, et al. The fastest deformable part model for object detection[C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 2497-2504. doi: 10.1109/CVPR.2014.320.
    SONG H O, GIRSHICK R, ZICKLER S, et al. Generalized sparselet models for real-time multiclass object recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(5): 1001-1012. doi: 10.1109/TPAMI. 2014.2353631.
    PIRSIAVASH H. Steerable part models[C]. Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 3226-3233. doi: 10.1109/CVPR.2012.6248058.
    KOKKINOS I. Shufflets: shared mid-level parts for fast object detection[C]. Proceedings of the 14th International Conference on Computer Vision, Sydney, Australia, 2013: 1393-1400. doi: 10.1109/ICCV.2013.176.
    DEAN T, RUZON M, SEGAL M, et al. Fast, accurate detection of 100,000 object classes on a single machine[C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 1814-1821. doi: 10.1109/CVPR.2013.237.
    RUDERM D L. The statistics of natural images[J]. Network Computation in Neural Systems, 2009, 5(4): 517-548. doi: 10.1088/0954-898X_5_4_006.
    DOLLAR P, APPEL R, BELONGIE S, et al. Fast feature pyramids for object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(8): 1532-1545. doi: 10.1109/TPAMI.2014.2300479.
    HOSANG J, BENENSON R, DOLLAR P, et al. What makes for effective detection proposals?[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(4): 814-830. doi: 10.1109/TPAMI.2015.2465908.
  • 加載中
計量
  • 文章訪問數(shù):  1174
  • HTML全文瀏覽量:  104
  • PDF下載量:  507
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-01-19
  • 修回日期:  2016-06-08
  • 刊出日期:  2016-11-19

目錄

    /

    返回文章
    返回