基于人工噪聲預(yù)編碼的多天線中繼安全性能分析
doi: 10.11999/JEIT160053
-
2.
(華僑大學(xué)廈門市移動(dòng)多媒體通信重點(diǎn)實(shí)驗(yàn)室 廈門 361021) ②(西安電子科技大學(xué)ISN國(guó)家重點(diǎn)實(shí)驗(yàn)室 西安 710071)
國(guó)家自然科學(xué)基金(61401165, 61302095, 61271383),福建省自然科學(xué)基金(2015J01262, 2014J01243)
Secrecy Performance Analysis of Multiple-antenna Relay Systems with Artificial Noise Precoding
-
2.
(Xiamen Key Laboratory of Mobile Multimedia Communications, Huaqiao University, Xiamen 361021, China)
The National Natural Science Foundation of China (61401165, 61302095, 61271383), The Natural Science Foundation of Fujian Province (2015J01262, 2014J01243)
-
摘要: 為提升存在竊聽者的中繼網(wǎng)絡(luò)的安全性能,在多天線放大轉(zhuǎn)發(fā)中繼端采用人工噪聲預(yù)編碼(ANP)和特征波束形成(EB)安全傳輸策略,推導(dǎo)了ANP和EB的可達(dá)安全速率(EASR)閉合表達(dá)式。在中繼配置大規(guī)模天線時(shí),推導(dǎo)了ANP的EASR下界,并在高信噪比和低信噪比情況下研究了漸近性能。分析和仿真結(jié)果顯示,在中高信噪比區(qū)域,ANP相比于EB可獲得顯著的性能增益,而在低信噪比區(qū)域,EB優(yōu)于ANP。當(dāng)信噪比增加時(shí),EB的EASR接近一個(gè)與第1跳無(wú)關(guān)的常數(shù)。在高信噪比區(qū)域,ANP的最優(yōu)功率分配方案是將一半左右的功率分配給人工噪聲。
-
關(guān)鍵詞:
- 物理層安全 /
- 放大轉(zhuǎn)發(fā)中繼 /
- 人工噪聲 /
- 遍歷可達(dá)安全速率
Abstract: To improve the secrecy performance of relay networks in the presence of one eavesdropper, the Artificial Noise Precoding (ANP) and Eigen-Beamforming (EB) secure transmission schemes are appilied at the multiple-antenna amplify-and-forward relay, and the new tight closed-form expressions of the Ergodic Achievable Secrecy Rate (EASR) for two schemes are derived. The lower bound of the EASR for ANP is derived with a large antenna array at the relay, and its corresponding asymptotic performance is investigated in the high SNR and low SNR regimes to show valuable intrinsic insights. Analysis and Simulation results show that, in the moderate-to-high SNR regime, ANP achieves remarkable performance gain over EB, while in the low SNR regime, EB outperforms ANP. Moreover, in the high SNR regime, it is optimal to allocate around half of total power to artificial noise for ANP. -
WANG H M, LIU F, and XIA X G. Joint source-relay precoding and power allocation for secure amplify- and-forward MIMO relay networks[J]. IEEE Transactions on Information Forensics and Security, 2014, 9(8): 1240-1250. doi: 10.1109/TIFS.2014.2327480. FAN L S, LEI X, DUONG T Q, et al. Secure multiuser communications in multiple amplify-and-forward relay networks[J]. IEEE Transactions on Communications, 2014, 62(9): 3299-3310. doi: 10.1109/TCOMM.2014.2345763. LIN H X, ZHAO R, HE Y C, et al. Secrecy performance of transmit antenna selection with outdated CSI for MIMO relay systems[C]. IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 2016: 2516-2521. YUAN Y, ZHAO R, LIN H X, et al. Secrecy outage probability of cognitive decode-and-forward relay networks[C]. IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 2016: 3167-3172. ZHAO R, HUANG Y M, WANG W, et al. Ergodic secrecy capacity of dual-hop multiple-antenna AF relaying systems[C]. IEEE Global Communications Conference (GLOBECOM), San Diego, USA, Dec. 2015: 1-6. doi: 10.1109/GLOCOM.2015.7417212. LAI L and GAMAL H E. The relayeavesdropper channel: Cooperation for secrecy[J]. IEEE Transactions on Information Theory, 2008, 54(9): 4005-4019. doi: 10.1109/TIT.2008.928272. LIN M, GE J, YANG Y, et al. Joint cooperative beamforming and artificial noise design for secrecy sum rate maximization in two-way AF relay networks[J]. IEEE Communications Letters, 2014, 18(2): 380-383. doi: 10.1109/LCOMM.2013. 121713.132262. HUANG J. Cooperative jamming for secure communications in MIMO relay networks[J]. IEEE Transactions on Signal Processing, 2011, 59(10): 4871-4884. doi: 10.1109/TSP.2011. 2161295. DING Z, PENG M, and CHEN H H. A general relaying transmission protocol for MIMO secrecy communications[J]. IEEE Transactions on Communications, 2012, 60(11): 3461-3471. doi: 10.1109/TCOMM.2012.081012.110236. GOEL S and NEGI R. Guaranteeing secrecy using artificial noise[J]. IEEE Transactions on Wireless Communications, 2008, 7(6): 2180-2189. doi: 10.1109/TWC.2008.060848. TSAI S H and POOR H V. Power allocation for artificial-noise secure MIMO precoding systems[J]. IEEE Transactions on Signal Processing, 2014, 62(13): 3479-3493. doi: 10.1109/TSP.2014.2329273. XIONG Q, GONG Y, LIANG Y C, et al. Achieving secrecy of MISO fading wiretap channels via jamming and precoding with imperfect channel state information[J]. IEEE Wireless Communications Letters, 2014, 3(4): 357-360. doi: 10.1109/LWC.2014.2317194. AKHTAR A, BEHNAD A, and WANG X. On the secrecy rate achievability in dual-hop amplify-and-forward relay networks[J]. IEEE Wireless Communications Letters, 2014, 3(5): 493-496. doi: 10.1109/LWC.2014.2349514. MUNOZ-MEDINA O, VIDAL J, and AGUSTIN A. Linear transceiver design in nonregenerative relays with channel state information[J]. IEEE Transactions on Signal Processing, 2007, 55(6): 2593-2604. doi: 10.1109/TSP.2006.890913. PARK K H, WANG T, and ALOUINI M S. On the jamming power allocation for secure amplify-and-forward relaying via cooperative jamming[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(9): 1741-1750. doi: 10.1109/ JSAC.2013.130908. BLOCH M, BARROS J, RODRIGUES M R D, et al. Wireless information-theoretic security[J]. IEEE Transactions on Information Theory, 2008, 54(6): 2515-2534. doi: 10.1109/TIT.2008.921908. GRADSHTEYN I S and RYZHIK I M. Table of Integrals, Series, and Products [M]. New York: Academic Press, 2007: 1-20. JIN S, LIANG X, WONG K K, et al. Ergodic rate analysis for multipair massive MIMO two-way relay networks[J]. IEEE Transactions on Wireless Communications, 2015, 14(3): 1480-1491. doi: 10.1109/TWC.2014.2367503. -
計(jì)量
- 文章訪問(wèn)數(shù): 1336
- HTML全文瀏覽量: 117
- PDF下載量: 374
- 被引次數(shù): 0