基于馬爾科夫鍵蒙特卡洛抽樣的最大似然時差-頻差聯(lián)合估計算法
doi: 10.11999/JEIT160050
基金項目:
國家自然科學基金(61401469, 41301481, 61501513),國家高技術(shù)研究發(fā)展計劃(2012AA7031015)
Maximum Likelihood TDOA-FDOA Estimator Using Markov Chain Monte Carlo Sampling
Funds:
The National Natural Science Foundation of China (61401469, 41301481, 61501513), The National High Technology Research and Development Program of China (2012AA7031015)
-
摘要: 該文針對無源定位中參考信號真實值未知的時差-頻差聯(lián)合估計問題,構(gòu)建了一種新的時差-頻差最大似然估計模型,并采用馬爾科夫鏈蒙特卡洛(MCMC)方法求解似然函數(shù)的全局極大值,得到時差-頻差聯(lián)合估計。算法通過生成時差-頻差樣本,并統(tǒng)計樣本均值得到估計值,克服了傳統(tǒng)互模糊函數(shù)(CAF)算法只能得到時域和頻域采樣間隔整數(shù)倍估計值的問題,且不存在期望最大化(EM)等迭代算法的初值依賴和收斂問題。推導了時差-頻差聯(lián)合估計的克拉美羅界,并通過仿真實驗表明,算法在不同信噪比條件下的估計精度優(yōu)于CAF算法和EM算法,且計算復(fù)雜度較低。
-
關(guān)鍵詞:
- 無源定位 /
- 時差 /
- 頻差 /
- 聯(lián)合估計 /
- 最大似然 /
- 馬爾科夫鏈蒙特卡洛方法
Abstract: This paper investigates the joint estimation of Time Difference Of Arrival (TDOA) and Frequency Difference Of Arrival (FDOA) in passive location system, where the true value of the reference signal is unknown. A novel Maximum Likelihood (ML) estimator of TDOA and FDOA is constructed, and Markov Chain Monte Carlo (MCMC) method is applied to finding the global maximum of likelihood function by generating the realizations of TDOA and FDOA. Unlike the Cross Ambiguity Function (CAF) algorithm or the Expectation Maximization (EM) algorithm, the proposed algorithm can also estimate the TDOA and FDOA of non-integer multiple of the sampling interval and has no dependence on the initial estimate. The Cramer Rao Lower Bound (CRLB) is also derived. Simulation results show that, the proposed algorithm outperforms the CAF and EM algorithm for different SNR conditions with higher accuracy and lower computational complexity. -
HIGGINS T, WEBSTER T, and MOKOLE E L. Passive multistatic radar experiment using WiMAX signals of opportunity. Part 1: Signal processing[J]. IET Radar, Sonar Navigation, 2016, 10(2): 238-247. doi: 10.1049/iet-rsn. 2015.0020. LI Ruiyang and HO K. Efficient closed-form estimators for multistatic sonar localization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1): 600-614. doi: 10.1109/TAES.2014.140482. ZEMMARI R, BROETJE M, BATTISTELLO G, et al. GSM passive coherent location system: Performance prediction and measurement evaluation[J]. IET Radar, Sonar Navigation, 2014, 8(2): 94-105. doi: 10.1049/iet-rsn.2013.0206. DECARLI N, GUIDI F, and DARDARI D. A novel joint RFID and radar sensor network for passive localization: Design and performance bounds[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(1): 80-95. doi: 10.1109 /JSTSP.2013.2287174. 曲付勇, 孟祥偉. 基于約束總體最小二乘方法的到達時差到達頻差無源定位算法[J]. 電子與信息學報, 2014, 36(5): 1075-1081. doi: 10.3724/SP.J.1146.2013.01019. QU Fuyong and MENG Xiangwei. Source localization using TDOA and FDOA measurements based on constrained total least squares algorithm[J]. Journal of Electronics Information Technology, 2014, 36(5): 1075-1081. doi: 10.3724 /SP.J.1146.2013.01019. STEIN S. Algorithms for ambiguity function processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(3): 588-599. doi: 10.1109/TASSP. 1981.1163621. TOLIMIERI R and WINOGRAD S. Computing the ambiguity surface[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33(5): 1239-1245. doi: 10.1109/ TASSP.1985.1164688. AUSLANDER L and TOLIMIERI R. Computing decimated finite cross-ambiguity functions[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, 36(3): 359-364. doi: 10.1109/29.1532. OZDEMIR A K and ARIKAN O. Fast computation of the ambiguity function and the Wigner distribution on arbitrary line segments[J]. IEEE Transactions on Signal Processing, 2001, 49(2): 381-393. doi: 10.1109/78.902121. TAO R, ZHANG W Q, and CHEN E Q. Two-stage method for joint time delay and Doppler shift estimation[J]. IET Radar, Sonar Navigation, 2008, 2(1): 71-77. doi: 10.1049 /iet-rsn:20060014. SHIN D C and NIKIAS C L. Complex ambiguity functions using nonstationary higher order cumulant estimates[J]. IEEE Transactions on Signal Processing, 1995, 43(11): 2649-2664. doi: 10.1109/78.482115. NIU X, CHING P C, and CHAN Y T. Wavelet based approach for joint time delay and Doppler stretch measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3): 1111-1119. doi: 10.1109/7. 784079. BELANGER S P. Multipath TDOA and FDOA estimation using the EM algorithm[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, Minneapolis, USA, 1993: 168-171. doi: 10.1109/ICASSP.1993.319621. GILAVERT C, MOUSSAOUI S, and IDIER J. Efficient Gaussian sampling for solving large-scale inverse problems using MCMC[J]. IEEE Transactions on Signal Processing, 2015, 63(1): 70-80. doi: 10.1109/TSP.2014.2367457. BATES B C and CAMPBEL E P. A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall-runoff modeling[J]. Water Resources Research, 2001, 37(4): 937-947. doi: 10.1029/2000WR900363. 林彥, 王秀壇, 彭應(yīng)寧, 等. 基于MCMC的線性調(diào)頻信號最大似然參數(shù)估計[J]. 清華大學學報(自然科學版), 2004, 44(4): 511-514. doi: 10.3321/j.issn:1000-0054.2004.04.020. LIN Yan, WANG Xiutan, PENG Yingning, et al. Maximum likelihood parameter estimation of chirp signals based on MCMC[J]. Journal of Tsinghua University(Science and Technology), 2004, 44(4): 511-514. doi: 10.3321/j.issn:1000- 0054.2004.04.020. NG W, REILLY J P, KIRUBARAJAN T, et al. Wideband array signal processing using MCMC methods[J]. IEEE Transactions on Signal Processing, 2005, 53(2): 411-426. doi: 10.1109/TSP.2004.838934. 李晶, 趙擁軍, 李冬海. 基于馬爾科夫鏈蒙特卡羅的時延估計算法[J]. 物理學報, 2014, 63(13): 67-73. doi: 10.7498/aps.63. 130701. LI Jing, ZHAO Yongjun, and LI Donghai. Time delay estimation using Markov chain Monte Carlo method[J]. Acta Physica Sinica, 2014, 63(13): 67-73. doi: 10.7498/aps.63. 130701. PINCUS M. A closed form solution of certain programming problems[J]. Operations Research, 1968, 16(3): 690-694. doi: 10.1287/opre.16.3.690. -
計量
- 文章訪問數(shù): 1426
- HTML全文瀏覽量: 116
- PDF下載量: 434
- 被引次數(shù): 0