基于快速密度搜索聚類算法的極化HRRP分類方法
doi: 10.11999/JEIT151457
-
1.
(國防科學技術大學電子信息系統(tǒng)復雜電磁環(huán)境效應國家重點實驗室 長沙 410073) ②(北京跟蹤與通信技術研究所 北京 100094)
國家自然科學基金項目(61302143, 61490693, 41301490),國家高技術研究發(fā)展計劃(863計劃)(2013AA122202)
Target Recognition for Polarimetric HRRP Based on Fast Density Search Clustering Method
-
1.
(State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, National University of Defense Technology, Changsha 410073, China)
-
2.
(Beijing Institute of Tracking and Telecommunications Technology, Beijing 100094, China)
The National Natural Science Foundation of China (61302143, 61490693, 41301490), The National 863 Program of China (2013AA122202)
-
摘要: 該文針對人造目標的極化高分辨距離像,提出一種基于快速密度搜索聚類算法的分類方法。首先根據(jù)散射結構在頻率和極化維度的特性,對散射中心的類型進行判別,在此基礎上構造目標分類的特征矢量。然后采用快速密度搜索聚類算法,實現(xiàn)目標的分類。仿真實驗結果表明,文中構建的特征矢量能較好地描述目標的結構屬性,具有較強的可分性。而快速密度搜索聚類算法簡單高效,在人造目標的分類識別中具有極大的應用潛力。Abstract: A classification algorithm based on the fast density search clustering method is proposed for polarimetric High Resolution Range Profile (HRRP) of man-made target. The polarization and frequency features are used to discriminate scattering centers in order to obtain the feature vectors for target classification. After that, the fast density search clustering method is applied to classifying the man-made target. The experiments show that the feature vectors for target classification can describe the structural properties of the target and can easily be classified. The fast density search clustering method operates simply and efficiently and can be applied to the man-made target classification with excellent performance.
-
黃培康, 殷紅成, 許小劍, 等. 雷達目標特性[M]. 北京: 電子工業(yè)出版社, 2005: 230-238. HUANG P K, YIN H C, XU X J, et al. Radar Target Signature[M]. Beijing: Publishing House of Electronics Industry, 2005: 230-238. JACKSON J A and MOSES R. Canonical scattering feature models for 3D and bistatic SAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(2): 525-54l. doi: 10.1109/TAES.2010.5461639. JACKSON J A. Three-dimensional feature models for synthetic aperture radar and experiments in feature extraction[D]. [Ph.D. dissertation], Ohio State University, 2009. 徐牧. 極化 SAR 圖像人造目標提取與幾何結構反演研究[D]. [博士論文], 國防科學技術大學, 2008. XU M. Extraction and geometrical structure retrieval of man-made target in POLSAR imagery[D]. [Ph.D. dissertation], National University of Defense Technology, 2008. FULLER D F. Phase history decomposition for efficient scatterer classification in SAR imagery[D]. [Ph.D. dissertation], Air Force Institute of Technology, 2011. SAVILLE M A, JACKSON J A, and FULLER D F. Rethinking vehicle classification with wide-angle polarimetric SAR[J]. IEEE Aerospace Electronic Systems Magazine, 2014, 29(1): 41-49. doi: 10.1109/MAES.2014.130057. 張瑞, 牛威, 寇鵬. 基于樣本緊密度的雷達高分辨距離像識別方法研究[J]. 電子與信息學報, 2014, 36(3): 529-536. doi: 10.3724/SP.J.1146.2013.00616. ZHANG R, NIU W, and KOU P. Radar high resolution range profiles recognition based on the affinity[J]. Journal of Electronics Information Technology, 2014, 36(3): 529-536. doi: 10.3724/SP.J.1146.2013.00616. 馮博, 陳渤, 王鵬輝, 等. 利用穩(wěn)健字典學習的雷達高分辨距離像目標識別算法[J]. 電子與信息學報, 2015, 37(6): 1457-1462. doi: 10.11999/JEIT141227. FENG B, CHEN B, WANG P H, et al. Radar high resolution range profile target recognition algorithm via stable dictionary learning[J]. Journal of Electronics Information Technology, 2015, 37(6): 1457-1462. doi: 10.11999/ JEIT141227. WANG J, LI Y, and CHEN K. Radar high-resolution range profile recognition via geodesic weighted sparse representation[J]. IET Radar, Sonar Navigation, 2015, 9(1): 75-83. doi: 10.1049/iet-rsn.2014.0113. POTTER L C, CHIANG D M, CARRIERE R, et al. A GTD based parametric model for radar scattering[J]. IEEE Transactions on Antennas and Propagation, 1995, 43(10): 1058-1067. doi: 10.1109/8.467641. 代大海. 極化雷達成像及目標特征提取研究[D]. [博士論文], 國防科學技術大學, 2008. DAI D H. Study on polarimetric radar imaging and target feature extraction[D]. [Ph.D. dissertation], National University of Defense Technology, 2008. KROGAGER E. A new decomposition of the radar target scattering matrix[J]. Electronics Letters, 1990, 26(18): 1525-1526. doi: 10.1049/el:19900979. LEE J S and POTTIER E. Polarimetric Radar Imaging: From Basics to Applications[M]. Boca Raton: Taylor Francis Group, 2009. RODRIGUEZ A and LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 334(6191): 1492-1496. doi: 10.1126/science.1242072. DUNGAN K E, AUSTIN C, NEHRBASS J, et al. Civilian vehicle radar data domes[J]. SPIE, 2010, 7699(5): 731-739. doi: 10.1117/12.850151. 何護翼. 聚類算法及其應用研究[D]. [碩士論文], 上海交通大學, 2007. HE H Y. Study on clustering algorithm and its applications [D]. [Master dissertation], Shanghai Jiao Tong University, 2007. -
計量
- 文章訪問數(shù): 1443
- HTML全文瀏覽量: 139
- PDF下載量: 462
- 被引次數(shù): 0