一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

基于改進多重測量向量模型的SAR成像算法

陳一暢 張群 楊婷 羅迎

陳一暢, 張群, 楊婷, 羅迎. 基于改進多重測量向量模型的SAR成像算法[J]. 電子與信息學(xué)報, 2016, 38(10): 2423-2429. doi: 10.11999/JEIT151391
引用本文: 陳一暢, 張群, 楊婷, 羅迎. 基于改進多重測量向量模型的SAR成像算法[J]. 電子與信息學(xué)報, 2016, 38(10): 2423-2429. doi: 10.11999/JEIT151391
CHEN Yichang, ZHANG Qun, YANG Ting, LUO Ying. A Novel SAR Imaging Algorithm Based on Modified Multiple Measurement Vectors Model[J]. Journal of Electronics & Information Technology, 2016, 38(10): 2423-2429. doi: 10.11999/JEIT151391
Citation: CHEN Yichang, ZHANG Qun, YANG Ting, LUO Ying. A Novel SAR Imaging Algorithm Based on Modified Multiple Measurement Vectors Model[J]. Journal of Electronics & Information Technology, 2016, 38(10): 2423-2429. doi: 10.11999/JEIT151391

基于改進多重測量向量模型的SAR成像算法

doi: 10.11999/JEIT151391
基金項目: 

國家自然科學(xué)基金(61471386),中國博士后基金(2015M570815),陜西省統(tǒng)籌創(chuàng)新工程-特色產(chǎn)業(yè)創(chuàng)新鏈項目(2015KTTSGY04-06)

A Novel SAR Imaging Algorithm Based on Modified Multiple Measurement Vectors Model

Funds: 

The National Natural Science Foundation of China (61471386), The Postdoctoral Science Foundation of China (2015M570815), The Overall Innovation and Characteristic Industry Innovation Chain Project of Shaanxi Province (2015KTTSGY04-06)

  • 摘要: 近年來,基于壓縮感知(Compressed Sensing, CS)理論的稀疏場景SAR成像成為研究熱點。在CS理論中,對于具有相同稀疏結(jié)構(gòu)的聯(lián)合稀疏目標(biāo)信號源,多重測量向量(Multiple Measurement Vectors, MMV)模型可以獲得優(yōu)于單重測量矢量(Single Measurement Vector, SMV)模型的重構(gòu)性能。然而,在距離徙動(Range Migration)不可忽略的應(yīng)用場景,SAR各脈沖回波1維距離像具有不完全相同的稀疏結(jié)構(gòu),這使得無法在SAR應(yīng)用中直接引入MMV模型。該文針對MMV模型與SAR距離徙動的矛盾,提出一種改進的MMV模型。在該模型下,各方位向位置對應(yīng)的1維距離像的稀疏結(jié)構(gòu)不要求完全相同,而是符合距離徙動特性。論文所提出的RM-OMP算法根據(jù)符合距離徙動特性的稀疏結(jié)構(gòu)搜索稀疏信號支撐集,可以準(zhǔn)確地重建稀疏信號源。論文采用仿真數(shù)據(jù)和實測數(shù)據(jù)實驗驗證了所提模型和算法的有效性。
  • JUN Shi, ZHANG Xiaoling, and YANG Jianyu. Principle and methods on bistatic SAR signal processing via time correlation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10): 3163-3178. doi: 10.1109/TGRS. 2008.920369.
    SHEN Fangfang, ZHAO Guanghui, LIU Zicheng, et al. SAR imaging with structural sparse representation[J]. IEEE Journal of Selected Topocs in Applied Earth Observations and Remote Sensing, 2015, 8(8): 3902-3910. doi: 10.1109/JSTARS.2014.2364294.
    BAMLER R. A comparison of Range-Doppler and wavenumber domain SAR focusing algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(4): 706-713. doi: 10.1109/36.158864.
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/TIT.2006.871582.
    邱偉, 趙宏鐘, 陳建軍, 等. 基于平滑范數(shù)的高分辨雷達一維成像研究[J]. 電子與信息學(xué)報, 2011,33(12): 2869-2874. doi: 10.3724/SP.J.1146.2011.00418.
    QIU Wei, ZHAO Hongzhong, CHEN Jianjun, et al. Highresolution radar one-dimendional imaging based on smoothed norm[J]. Journal of Electronics Information Technology, 2011, 33(12): 2869-2874. doi: 10.3724/SP. J.1146.2011.00418.
    BU Hongxia, TAO Ran, BAI Xia, et al. A novel SAR imaging algorithm based on compressed sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5): 1003-1007. doi: 10.1106/LGRS.2014.2372319.
    TELLO A M, LOPEZ D P, and MALLORQUI J J. A novel strategy for radar imaging based on compressive sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(12): 4285-4295. doi: 10.1109/TGRS.2010.2051231.
    ONHON N O and CETIN M. A sparsity driven approach for joint SAR imaging and Phase error correction[J]. IEEE Transactions on Image Processing, 2011, 21(4): 2075-2088. doi: 10.1109/TIP.2011.2179056.
    XIA Linuo, ZHU Daiyin, and JIANG Rui. A research on SAR autofocusing algorithms for compressive sensing technique [C]. IET International Radar Conference, Xi'an, 2013: 1-6.
    GU Fu-fei, ZHANG Qun, CHI Long, et al. A novel motion compensating method for MIMO-SAR imaging based on compressed sensing[J]. IEEE Sensors Journal, 2015, 15(4): 2157-2165. doi: 10.1109/JSEN.2014.2371451.
    CETIN M, STOJANOVIC I, ONHON N O, et al. Sparsity-driven synthetic aperture radar imaging: reconstruction, autofocusing, moving targets, and compressed sensing[J]. IEEE Signal Processing Magazine, 2014, 31(4): 27-40. doi: 10.1109/MSP.2014.2312834.
    YANG Jiefang and ZHANG Yunhua. Novel compressive sensing-based Dechirp-Keystone algorithm for synthetic aperture radar imaging of moving target[J]. IET Radar, Sonar Navigation, 2015, 9(5): 509-518. doi: 10.1049/iet-rsn. 2014.0306.
    CHEN J and HUO X. Theoretical results on sparse representations of multiple-measurement vectors[J]. IEEE Transactions on Signal Processing, 2006, 54(12): 4634-4643. doi: 10.1109/TSP.2006.881263.
    YANG J, BOUZERDOUM A, TIVIVE F H C, et al. Multiple-measurement vector model and its application to through-the-wall radar imaging[C]. IEEE ICASS, Prague, Czech Republic, 2011: 2672-2675.
    陳一暢, 張群, 陳校平, 等. 多重測量矢量模型下的稀疏步進頻率SAR成像算法[J]. 電子與信息學(xué)報, 2014,36(12): 2986-2993. doi: 10.3724/SP.J.1146.2013.01831.
    CHEN Yichang, ZHANG Qun, CHEN Xiaoping, et al. An imaging algorithm of sparse stepped frequency SAR based on multiple measurement vectors model[J]. Journal of Electronics Information Technology, 2014, 36(12): 2986-2993. doi: 10.3724/SP.J.1146.2013.01831.
    TROPP J A, GILBERT A C, and STRAUSS M J. Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit[J]. Signal Processing, 2006, 86(3): 572-588. doi: 10.1016/j.sigpro.2005.05.030
    TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666. doi: 10.1109/TIT.2007.909108.
    CUMMING L G and WONG F H. Digital Processing of Synthetic Aperture Radar Data: Algorithm and Implementation[M]. MA: Artech House, 2005: 393-394.
  • 加載中
計量
  • 文章訪問數(shù):  1405
  • HTML全文瀏覽量:  130
  • PDF下載量:  531
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2015-12-09
  • 修回日期:  2016-05-03
  • 刊出日期:  2016-10-19

目錄

    /

    返回文章
    返回