頻控陣?yán)走_(dá):概念、原理與應(yīng)用
doi: 10.11999/JEIT151235
基金項(xiàng)目:
國家自然科學(xué)基金(61501781, 61471103),四川省科技支撐項(xiàng)目(2015GZ0211, 2014GZ0015)
Frequency Diverse Array Radar: Concept, Principle and Application
Funds:
The National Natural Science Foundation of China (61501781, 61471103), Sichuan Provincial Technology Research and Development Fund (2015GZ0211, 2014GZ0015)
-
摘要: 頻控陣?yán)走_(dá)是近年來提出的一種新體制陣列雷達(dá)技術(shù),它能夠形成具有距離依賴性的發(fā)射波束,克服了傳統(tǒng)相控陣?yán)走_(dá)不能有效控制發(fā)射波束的距離指向問題,并具有很多獨(dú)特的應(yīng)用優(yōu)勢。該文系統(tǒng)地介紹頻控陣?yán)走_(dá)的概念、原理和應(yīng)用特點(diǎn),全面梳理國內(nèi)外關(guān)于頻控陣?yán)走_(dá)技術(shù)的研究文獻(xiàn),系統(tǒng)性地總結(jié)歸納頻控陣概念、基本原理及其雷達(dá)應(yīng)用特點(diǎn)等幾個(gè)方面的研究現(xiàn)狀,并分析頻控陣?yán)走_(dá)未來的應(yīng)用前景和亟待解決的關(guān)鍵技術(shù)問題。
-
關(guān)鍵詞:
- 頻控陣 /
- 頻控陣?yán)走_(dá) /
- 陣列設(shè)計(jì) /
- 相控陣 /
- 新體制雷達(dá)
Abstract: Frequency Diverse Array (FDA) radar is a new radar technique proposed in recent years. FDA uses a small frequency increments across its array elements to provide a range-dependent transmit beampattern, which overcomes the disadvantages of a phased-array providing range-independent beampattern, and offers many promising advantages for radar applications. This paper introduces the concepts, principles and application characteristics of FDA radar, makes an overview of recent FDA radar literature, and discusses FDA radar promising applications, along with existing technical challenges.-
Key words:
- Frequency Diverse Array (FDA) /
- FDA radar /
- Array design /
- Phased-array /
- New radar scheme
-
WANG W Q. Multi-Antenna Synthetic Aperture Radar [M]. New York: CRC Press, 2013: 376-381. ANTONIK P, WICKS W C, GRIFFITHS H D, et al. Frequency diverse array radars[C]. Proceedings of the IEEE Radar Conference, Verona, NY, 2006: 470-475. WICKS M C and ANTONIK P. Frequency diverse array with independent modulation of frequency, amplitude, and phase [P]. US Patent 7.511, 665b2, 2008. 霍凱, 趙晶晶. OFDM新體制雷達(dá)研究現(xiàn)狀與發(fā)展趨勢[J]. 電子與信息學(xué)報(bào), 2015, 37(11): 2776-2789. doi: 10.11999/ JEIT150335. HUO K and ZHAO J J. The development and prospect of the new OFDM radar[J]. Journal of Electronics Information Technology, 2015, 37(11): 2776-2789. doi: 10.11999/ JEIT150335. 王文欽. 基于球函數(shù)的頻控陣?yán)走_(dá)發(fā)射波束形成方法[C]. 第12屆全國雷達(dá)學(xué)術(shù)年會(huì), 武漢, 2012: 529-532. WANG W Q. Spheroidal sequence-based transmit beamforming for frequency diverse array radar[C]. The 12th China Radar Technology Conference, Wuhan, 2012: 529-532. AYTUN A. Frequency diverse array radar[D]. [Master dissertation], Naval Postgraduate School, Monterey, California, 2010. ANTONIK P. An investigation of a frequency diverse array [D]. [Ph.D. dissertation], University of College London, 2009. WANG W Q. Frequency diverse array antenna: New opportunities[J]. IEEE Antennas and Propagation Magazine, 2015, 57(2): 145-152. SAMMARTINO P F, Baker C J, and GRFFITHS H D. Frequency diverse MIMO techniques for radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 201-222. BRADY S. Frequency diverse array radar: Signal characterization and measurement accuracy[D]. [Master dissertation], Air Force Institute of Technology, 2010. NATHANSON F E, Reilly J P, and Cohen M N. Radar Design Principles: Signal Processing and the Environment [M]. New York: McGraw-Hill, 1990, Chapter 4. WANG W Q. Overview of frequency diverse array in radar and navigation applications[J]. IET Radar, Sonar Navigation, 2015, doi: 10.1049/iet-rsn.2015.0464. EKER T. A conceptual evaluation of frequency diverse arrays and novel utilization of LFMCW[D]. [Ph.D. dissertation], Middle East Technical University, 2011. WANG W Q. Clock timing jitter analysis and compensation for bistatic synthetic aperture radar systems[J]. Fluctuation and Noise Letters, 2007, 7(3): 341-350. WANG W Q, CAI J Y, and Yang Y W. Extracting phase noise of microwave and millimeter-wave signals by deconvolution[J]. IEE Proceedings-Science, Measurement Technology, 2006, 153(1): 7-12. WANG W Q. Analytical modeling and simulation of phase noise in bistatic synthetic aperture radar systems[J]. Fluctuation and Noise Letters, 2006, 6(3): 297-303. SECMEN M, DEMIR S, HIZAL A, et al. Frequency diverse array antenna with periodic time modulated pattern in range and angle[C]. Proceedings of IEEE Radar Conference, Boston, MA, 2007: 427-430. EKER T, DEMIR S, and HIZAL A. Exploitation of Linear Frequency Modulation Continuous Waveform (LFMCW) for Frequency Diverse Arrays[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(7): 3546-3553. ANTONIK P, WICKS M C, and GRIFFITHS H D. Multi- mission multi-mode waveform diversity[C]. Proceedings of IEEE Radar Conference, Verona, NY, 2006: 580-582. FAROOQ J. Frequency diversity for improving synthetic aperture radar imaging[D]. [Ph.D. dissertation], Air Force Institute of Technology, 2009. HIGGINS T. Waveform diversity and range-couple adaptive radar signal processing [D]. [Ph.D. dissertation], University of Kansas, 2011. JONES A M. Frequency diverse array receiver architectures [D]. [Ph.D. dissertation], Wright State University, 2011. ANTONIK P, WICKS M C, GRIFFITHS H D, et al. Range dependent beamforming using element level waveform diversity[C]. Proceedings of International Waveform Diversity and Design Conference, Las Vegas, USA, 2006: 1-4. MUATAFA S, SIMAEK D, and TAYKAN H A E. Frequency diverse array antenna with periodic time modulated pattern in range and angle[C]. Proceedings of IEEE Radar Conference, Boston, 2007: 427-430. HUANG S, TONG K F, and Baker C J. Frequency diverse array: simulation and design[C]. Proceedings of LAPS Antennas and Propagation Conference, Loughborough, UK, 2009: 253-256. WICKS M C and ANTONIK P. Frequency diverse array with independent modulation of frequency, amplitude, and phase [P]. USA Patent, 7,319,427, 2008. WICKS M C and ANTONIK P. Method and apparatus for a frequency diverse array[P]. USA Patent, 7.511,665B2, 2009. HUANG J, TONG K F, and BAKER C J. Frequency diverse array with beam scanning feature[C]. Proceedings of IEEE International Antennas and Propagation Symposium, San Diego, 2008: 1-4. HIGGINS T and BLUNT S D. Analysis of range-angle coupled beamforming with frequency-diverse chirps[C]. Proceedings of International Waveform Diversity and Design Conference, Kissimmee, FL, 2009: 1-4. XU J W, ZHU S Q, and LIAO G S. Space-time-range adaptive processing for airborne radar systems[J]. IEEE Sensors Journal, 2015, 15(3): 1602-1610. XU J W, ZHU S Q, and LIAO G S. Range ambiguous clutters suppression for airborne FDA-STAP radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1620-1631. CETINTEPE C and DEMIR S. Multipath characteristics of frequency diverse arrays over a ground plane[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(7): 3567-3574. ZHUANG L and LIU X Z. Precisely beam steering for frequency diverse arrays based on frequency offset selection [C]. Proceedings of International Radar Conference, Bordeaux, France, 2009: 1-4. WANG W Q, SHAO H Z, and CAI J Y. Range-angle- dependent beamforming by frequency diverse array antenna [J]. International Journal of Antennas and Propagation, 2012, 2012(1): 1-10. MANIKAS A, COMMIN H, and SLEIMAN A. Array manifold curves in and their complex cartan matrix [J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(4): 670-680. EFATATHOPOULOS G and MANIKAS A. Existence and uniqueness of hyperhelical array manifold curves[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(4): 625-633. KLEINATEUBER A K and SEGHOUANE M. On the deterministic CRB for DOA estimation in unknown noise fields using sparse sensor arrays[J]. IEEE Transactions on Signal Processing, 2008, 56(2): 860-864. BAYAAL U and MOAEA R L. On the geometry of isotropic arrays[J] IEEE Transactions on Signal Processing, 2003, 51(6): 1469-1478. MALLOY N J. Array manifold geometry and sparse volumetric array design optimization[C]. Proceedings of 41st International Asilomar Conference on Signals, Systems and Computer, 2007: 1257-1261. BUHREN M, PEAABENTO M, and BOHME J. Virtual array design for array interpolation using differential geometry[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal Quebec, 2004: 229-232. MANIKAS A and PRPUKAKIS C. Modeling and estimation of ambiguities in linear arrays[J]. IEEE Transactions on Signal Processing, 1998, 46(8): 2166-2179. MANIKAS A, PROUKIS C, and LEKADITICS V. Investigative study of planar array ambiguities based on hyperhelical parameterization[J]. IEEE Transactions on Signal Processing, 1999, 47(6): 1532-1541. WANG Y B, WANG W Q, and CHEN H. Linear frequency diverse array manifold geometry and ambiguity analysis[J]. IEEE Sensors Journal, 2015, 15(2): 1027-1034. 王永兵. 頻控陣陣列參數(shù)優(yōu)化設(shè)計(jì)及其目標(biāo)定位研究[D]. [碩士論文], 電子科技大學(xué), 2015. WANG Y B. Frequency diverse array parameter optimization and its applications in yarget localization[D]. [Maser dissertation], University of Electronic Science and Technology of China, 2015. KHAN W, QUREAHI I M, SULTAN K, et al. Properties of ambiguity function of frequency diverse array radar[J]. Remote Sensing Letters, 2014, 5(9): 813-822. DOGANDZIC A and NEHORAI A. Estimating range, velocity, and direction with a radar array[C]. Proceedings of International Conference on Acoustics, Speech, Signal Processing, Phoenix, AZ, 1999: 2773-2776. ZHANG J J, MAALOULI G, and SUPPAPPOLA A P. Cramer-Rao lower bounds for the joint estimation of target attributes using MIMO radar[C]. Proceedings of International Waveform Diversity and Design Conference, Orlando, USA, 2009: 103-107. HAAANIEN A, VOROBYOY S A, and GERAHMAN A B. Moving target parameters estimation in noncoherent MIMO radar systems[J]. IEEE Transactions on Signal Processing, 2012, 60(5): 2354-2361. WANG Y B, WANG W Q, and SHAO H Z. Frequency diverse array radar Cramer-Rao lower bounds for estimating direction, range and velocity[J]. International Journal of Antennas and Propagation, 2014, 2014(1): 1-15. KHAN W, QUREAHI I M, and SAEED S. Frequency diverse array radar with logarithmically increasing frequency offset [J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 499-502. KHAN W and QUREAHI I M. Frequency diverse array radar with time-dependent frequency offset[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 758-761. WANG W Q. Subarray-based frequency diverse array for target range-angle estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4): 3057-3067. GAO K D, SHAO H Z, CAI J Y, et al. Impact of frequency increment errors on frequency diverse array MIMO in adaptive beamforming and target localization[J]. Digital Signal Processing, 2015, 44(1): 58-67. GAO K D, CHEN H, SHAO H Z, et al. Impacts of frequency increment error on frequency diverse array beampattern[J]. EURASIP Journal on Advances in Signal Processing, 2015, 2015(1): 1-12. MOFFET A. Minimum-redundancy linear arrays[J]. IEEE Transactions on Antennas and Propagation, 1968, 16(2): 172-175. BEDROAIAN S D. Nonuniform linear arrays: graph- theoretic approach to minimum redundancy[J]. Proceedings of the IEEE, 1986, 74(7): 1040-1043. GELLI G and IZZO L. Minimum-redundancy linear arrays for cyclostationaryity-based source location[J]. IEEE Transactions on Signal Processing, 1997, 45(10): 2605-2608. LI H and HIMED H. Transmit subaperturing for MIMO radars with collocated antennas[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(1): 55-65. HE Q, BLUM R S, and GODRICH H. Target velocity estimation and antenna placement for MIMO radar with widely separated antennas[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(1): 79-100. 陸珉, 許紅波, 朱宇濤. MIMO雷達(dá)DOA估計(jì)陣列設(shè)計(jì)[J]. 航空學(xué)報(bào), 2010, 31(7): 1410-1416. LU M, XU H B, and ZHU Y T. MIMO radar DOA estimation array design[J]. Acta Aeronautica Et Astronautica Sinica, 2010, 31(7): 1410-1416. WANG Y B, WANG W Q, CHEN H, et al. Optimal frequency diverse subarray design with Cramer-Rao lower bound minimization[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 1188-1191. NELDER J A and MEAD R. A simplex method for function minimization[J]. Computation Journal, 1965, 7(4): 308-313. WANG W Q. Range-angle dependent transmit beampattern synthesis for linear frequency diverse arrays[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(8): 4073-4081. FORATER P and VEZZOA I. Application of speroidal sequences to array processing[C]. Proceedings of IEEE International Conference on Acoustics, Speech, Signal Processing, Dallas, TX, 1987: 2268-2271. SHAO H Z, CHEN H, and LI J C. Transmit energy focusing in two-dimensional sections with frequency diverse array [C]. Proceedings of IEEE China Summit and International Conference on Signal and Information Processing, Chengdu, 2015: 104-108. GAO K D, CHEN H, SHAO H Z, et al. A two-dimensional low-sidelobe transmit beampattern synthesis for linear frequency diverse array[C]. Proceedings of IEEE China Summit and International Conference on Signal and Information Processing, Chengdu, 2015: 408-412. JONES A and RIGLING R. Planar frequency diverse array radar receiver architecture[C]. Proceedings of International Radar Conference, Atlanta, GA, 2012: 145-150. XU J W, LIAO G S, and ZHU S Q. Receive beamforming of frequency diverse array radar systems[C]. Proceedings of XXXI URSI General Assembly and Scientific Symposium, Beijing, 2014: 1-4. WANG Y M, MAO X P, ZHANG J, et al. A multi-domain collaborative filter based on polarization sensitive frequency diverse array[C]. Proceedings of IEEE Radar Conference, Cincinati, 2014: 507-511. FAROOQ J. TEMPLE M, and SAVILLE M. Exploiting frequency diverse array processing to improve SAR imaging resolution[C]. Proceedings of IEEE Radar Conference, Rome, 2008: 1-5. BAIZERT P, HALE T, TEMPLE M, et al. Forward-looking radar GMTI benefits using a linear frequency diverse array [J]. Electronic Letters, 2006, 42(22): 1311-1312. SAMMARTINO P F and BAKER C J. The frequency diverse bistatic system[C]. Proceedings of IEEE International Waveform Diversity and Design Conference, Kissimmee, FL, 2009: 155-159. SAMMARTINO P F and BAKER C J. Developments in the frequency diverse bistatic system[C]. Proceedings of IEEE Radar Conference, Pasadena, CA, 2009: 1-5. WANG W Q, SO H C, and SHAO H Z. Nonuniform frequency diverse array for range-angle imaging of targets[J]. IEEE Sensors Journal, 2014, 14(8): 2469-2476. WANG W Q. Two-dimensional imaging of targets by stationary frequency diverse array[J]. Remote Sensing Letters, 2013, 4(11): 1067-1076. ZHANG L and LIU X. Application of frequency diversity to suppress grating lobes in coherent MIMO radar with separated subapertures[J]. EURASIP Journal of Advances in Signal Processing, 2009, 2009(1): 1-9. WANG W Q. Phased-MIMO radar with frequency diversity for range-dependent beamforming[J]. IEEE Sensors Journal, 2013, 13(4): 1320-1328. WANG W Q and SHAO H Z. Range-angle localization of targets by a double-pulse frequency diverse array radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(1): 106-114. KHAN W, QUREAHI I M, BASIT A, et al. A double pulse MIMO frequency diverse array radar for improved range-angle localization of target[J]. Wireless Personal Communications, 2015, 82(4): 2199-2213. WANG W Q and SO H C. Transmit subaperturing for range and angle estimation in frequency diverse array radar[J]. IEEE Transactions on Signal Processing, 2014, 62(8): 2000-2011. XU J X, LIAO G S, ZHU S Q, et al. Joint range and angle estimation using MIMO radar with frequency diverse array [J]. IEEE Transactions on Signal Processing, 2015, 63(13): 3396-3410. SHAO H Z, LI J C, CHEN H, et al. Adaptive frequency offset selection in frequency diverse array radar[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 1405-1408. BASIT A, QUREAHI I M, KHAN W, et al. Cognitive frequency offset calculation for frequency diverse array radar [C]. Proceedings of 12th International Bhurban Conference on Applied Sciences and Technology, Islamabad, 2015: 641-645. WANG W Q. Cognitive frequency diverse array radar with situational awareness[J]. IET Radar, Sonar Navigation, 2016, 10(2): 359-369. SAEED S, QUREAHI I M, BASIT A, et al. Cognitive null steering in frequency diverse array radars[J]. International Journal of Microwave and Wireless Technologies, doi: 10.1017 /S1759078715001221: 1-9. ZHU C L, WANG W Q, CHEN H, et al. Target direction-of- arrival estimation using nested frequency diverse array[C]. Proceedings of International Conference on Estimation, Detection and Information Fusion, Harbin, China, 2015: 200-203. ZHU C L, WANG W Q, CHEN H, et al. Detection performance analysis of nested frequency diverse array radar [C]. Proceedings of International Radar Symposium, Dresden, Germany, 2015: 700-705. ZHU C L, CHEN H, and SHAO H Z. Joint phased-MIMO and nested-array beamforming for increased degrees-of- freedom[J]. International Journal of Antennas and Propagation, 2015, 2015(1): 1-11. WANG W Q and LING C. Nested array with time-delayers for target range and angle estimation[C]. Proceedings of 3rd International Workshop on Compressed Sensing Theory and Its Applications to Radar, Sonar and Remote Sensing, Pisa, Italy, 2015: 249-252. WANG W Q. Adaptive RF stealth beamforming for frequency diverse array radar[C]. Proceedings of 23rd European Signal Processing Conference, Nice, France, 2015: 1163-1166. DING Y, ZHANG J, and FUSCO V. Frequency diverse array OFDM transmitter for security wireless communication[J]. Electronics Letters, 2015, 51(17): 1374-1376. HAYKIN S. Cognitive radar: a way of the future[J]. IEEE Signal Processing Magazine, 2006, 23(1): 30-40. GUERI J R. Cognitive radar: a knowledge-aided fully adaptive approach[C]. Proceedings of IEEE Radar Conference, Washington DC, 2010: 1365-1370. 黎湘, 范梅梅. 認(rèn)知雷達(dá)及其關(guān)鍵技術(shù)研究進(jìn)展[J]. 電子學(xué)報(bào), 2012, 40(9): 1863-1870. LI X and FAN M M. Research advances on cognitive radar and its key technology[J]. Acta Electronica Sinica, 2012, 40(9): 1863-1870. BAKER C J. Intelligence and radar systems[C]. Proceedings of IEEE Radar Conference, Washington DC, 2010: 1276-1279. GUERCI J R. Cognitive Radar: The Knowledge Aided Fully Adaptive Approach[M]. Boston/London: Artech House, 2010, Chapter 1. JIU B, LIU H W, ZHANG L, et al. Wideband cognitive radar waveform optimization for joint target radar signature and target detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1530-1546. LI X, HU Z, QIU R, et al. Demonstration of cognitive radar for target localization under interference[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4): 2440-2455. 范梅梅. 認(rèn)知雷達(dá)目標(biāo)識(shí)別自適應(yīng)波形設(shè)計(jì)技術(shù)研究[D]. [博士論文], 國防科學(xué)技術(shù)大學(xué), 2012. FAN M M. Study of cognitive radar target recognition waveform adaptive designing[D]. [Ph.D. dissertation], National University of Defense Technology, 2012. 黎薇萍. 多發(fā)射認(rèn)知雷達(dá)的波形優(yōu)化設(shè)計(jì)[D].[博士論文], 西安電子科技大學(xué), 2012. LI W P. Multi-transmit waveform optimal design algorithms for ccognitive radars[D]. [Ph.D. dissertation], Xidian University, 2012. 夏雙志. 認(rèn)知雷達(dá)信號(hào)處理[D]. [博士論文], 西安電子科技大學(xué), 2012. XIA S Z. Cognitive radar signal processing[D]. [Ph.D. dissertation], Xidian University, 2012. 莊姍姍. 雷達(dá)自適應(yīng)波形優(yōu)化設(shè)計(jì)研究[D]. [博士論文], 南京理工大學(xué), 2012. ZHUANG S S. Radar adaptive waveform optimal design[D]. [Ph.D. dissertation], Nanjing University of Technology and Engineering, 2012. 周宇. 基于認(rèn)知的雷達(dá)自適應(yīng)處理方法研究[D]. [博士論文], 西安電子科技大學(xué), 2010. ZHOU Y. Knowledge-based radar adaptive signal processing [D]. [Ph.D. dissertation], Xidian University, 2010. HULEIHEL W, TABRIKAIN J, and SHAVIT R. Optimal adaptive waveform design for cognitive MIMO radar[J]. IEEE Transactions on Signal Processing, 2013, 61(20): 5075-5089. 張貞凱, 周建江, 汪飛, 等. 機(jī)載相控陣?yán)走_(dá)射頻隱身時(shí)最優(yōu)搜索性能研究[J]. 宇航學(xué)報(bào), 2011, 32(9): 2023-2028. ZHANG Z K, ZHOU J J, WANG F, et al. Research on optimal search performance of airborne phased array radar for radio frequency stealth[J]. Journal of Astronautics, 2011, 32(9): 2023-2028. LAWRENCE D E. Low probability of intercept antenna beamforming[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(9): 2858-2865. 張貞凱, 周建江, 田雨波 等. 基于射頻隱身的采樣間隔和功率設(shè)計(jì)[J]. 現(xiàn)代雷達(dá), 2012, 34(4): 19-23. ZHANG Z K, ZHOU J J, TIAN Y B, et al. Design of sampling interval and power based on radio frequency stealth [J]. Moder Radar, 2012, 34(4): 19-23. 張貞凱, 周建江, 汪飛, 等. 基于射頻隱身的相控陣?yán)走_(dá)功率控制算法[J]. 系統(tǒng)工程與電子技術(shù), 2012, 34(11): 2244-2248. ZHANG Z K, ZHOU J J, WANG F, et al. Novel algorithm of power control based on radio frequency stealth[J]. Systems Engineering and Electronics, 2012, 34(11): 2244-2248. 廖俊, 于雷, 俞利新, 等. 基于LPI 的相控陣?yán)走_(dá)輻射控制方法[J]. 系統(tǒng)工程與電子技術(shù), 2011, 33(12): 2638-2643. LIAO J, YU L, YU L X, et al. Method of radiation control for phased array radar based on LPI[J]. Systems Engineering and Electronics, 2011, 33(12): 2638-2643. ZHAO S Y and CHENG T. Research on MIMO radar RF stealth algorithm in searching mode[C]. Proceedings of IEEE International Conference on Signal Processing, Communications and Computing, Guilin, 2014: 88-93. 楊少委, 程婷, 何子述. MIMO 雷達(dá)搜索模式下的射頻隱身算法[J]. 電子與信息學(xué)報(bào), 2014, 36(5): 1017-1022. doi: 10.3724/SP.J.1146.2013.00994. YANG S W, CHENG T and HE Z S. Algorithm of radio frequency stealth for MIMO radar in search mode[J]. Journal of Electronics Information Technology, 2014, 36(5): 1017-1022. doi: 10.3724/SP.J.1146.2013.00994. YANG H B, WANG J, and ZHOU J J. Design of noise modulated RBPC continuous wave RF stealth radar signal waveform[C]. Proceedings of IEEE 11th International Conference on Signal Processing, Beijing, 2012: 1760-1763. WANG W Q. Adaptive RF stealth beamforming for frequency diverse array radar[C]. Proceedings of 23rd European Signal Processing Conference, Nice, France, 2015: 1158-1161. DALY M P and BERNHARD J T. Directional modulation technique for phased arrays[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(9): 2633-2640. DALY M P, DALY E I, and BERNHARD J T. Demonstration of directional modulation using a phased array[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(5): 1545-1550. GAO K D, SHAO H Z, CAI J Y, et al. Frequency diverse array MIMO radar adaptive beamforming with range- dependent interference suppression in target localization[J]. International Journal of Antennas and Propagation, 2015, 2015(1): 1-10. -
計(jì)量
- 文章訪問數(shù): 4780
- HTML全文瀏覽量: 464
- PDF下載量: 1930
- 被引次數(shù): 0