大規(guī)模MIMO系統(tǒng)中動態(tài)導頻分配
doi: 10.11999/JEIT151091
-
2.
(杭州電子科技大學通信工程學院 杭州 310016) ②(東南大學移動通信國家重點實驗室 南京 210024)
東南大學移動通信國家重點實驗室開放研究基金(2012D18),國家自然科學基金(61501158),浙江省教育廳項目(Y201329723),浙江省固態(tài)存儲和數(shù)據(jù)安全關(guān)鍵技術(shù)重點科技創(chuàng)新團隊項目(2013TD03)
Dynamic Pilot Allocation in Massive MIMO System
-
2.
(School of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310016, China)
The Open Research Fund of National Mobile Communications Research Laboratory, Southeast University (2012D18), The National Natural Science Foundation of China (61501158), The Project of Zhejiang Province Educational Department of China (Y201329723), Key Scientific and Technological Innovation Team Project of Solid-state Storage and Data Security Technologies of Zhejiang Province (2013TD03)
-
摘要: 針對大規(guī)模多輸入多輸出(MIMO)系統(tǒng)中存在的導頻污染問題,該文提出一種動態(tài)導頻分配方案。所提方案利用目標小區(qū)與干擾小區(qū)用戶之間的信號干擾強度差將干擾小區(qū)分為Uin和Uout兩類,并對Uin中的用戶進行最優(yōu)導頻分配,Uout中的用戶進行隨機導頻分配來提升系統(tǒng)的平均下行可達和速率。同時,在存在額外正交導頻組的情況下對所提方案做了進一步優(yōu)化。仿真結(jié)果表明,所提的動態(tài)導頻分配方案能夠有效地提升大規(guī)模MIMO系統(tǒng)的性能。
-
關(guān)鍵詞:
- 大規(guī)模多輸入多輸出 /
- 導頻污染 /
- 導頻分配 /
- 可達和速率
Abstract: A dynamic pilot allocation scheme is proposed in case of the pilot contamination existing in massive MIMO system. Based on the signal to interference difference between the aim cell user and the interference cell user, the interference cell is divided intoUin and Uout. Specifically, in order to improve the average downlink achievable sum rates, the users in theUin are operated with the optimal pilot allocation, and the users in theUout are operated with the random pilot allocation. Simultaneously, the proposed pilot allocation scheme is further optimized with an extral set of orthogonal pilots. Simulation results show that the proposed dynamic pilot allocation scheme can enhance the downlink performance of the massive MIMO system effectively.-
Key words:
- Massive MIMO /
- Pilot contamination /
- Pilot allocation /
- Achievable sum rates
-
LARSSON E, EDFORS O, TUFVESSON F, et al. Massive MIMO for next generation wireless systems[J]. IEEE Communications Magazine, 2014, 52(2): 186-195. doi: 10.1109/MCOM.2014.6736761. MARZETTA T L. Noncooperative cellular wireless with unlimited numbers of base station antennas[J]. IEEE Transactions on Wireless Communications, 2010, 9(11): 3590-3600. doi: 10.1109/TWC.2010.092810.091092. PANZNER B, ZIRWAS W, DIERKS S, et al. Deployment and implementation strategies for massive MIMO in 5G[C]. Globecom Workshops(GC Wkshps), 2014: 346-351. doi: 10.1109/GLOCOMW.2014.7063455. GAO X, EDFORS O, RUSEK F, et al. Massive MIMO performance evaluation based on measured propagation data[J]. IEEE Transactions on Wireless Communications, 2015, 14(7): 3899-3911. doi: 10.1109/TWC.2015.2414413. 胡瑩, 黃永明, 俞菲, 等. 多用戶大規(guī)模MIMO系統(tǒng)能效資源分配算法[J]. 電子與信息學報, 2015, 37(9): 2198-2203. doi: 10.11999/JEIT150088. HU Ying, HUANG Yongming, YU Fei, et al. Energy-efficient resource allocation based on multi-user massive MIMO system[J]. Journal of Electronics Information Technology, 2015, 37(9): 2198-2203. doi: 10.11999/JEIT150088. LU Lu, LI G Y, SWINDLEHURST A L, et al. An overview of massive MIMO: benefits and challenges[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(5): 742-758. doi: 10.1109/JSTSP.2014.2317671. JIE L, ZHENG X, YA Y J, et al. The overview of big data storage and management[C]. IEEE Internation Conference on Cognitive Informatices Cognitive Computing(ICCICC), London, 2014: 510-513. doi: 10.1109/ICCI-CC.2014.6921508. ZHANG C C and QIU R C. Massive MIMO as a big data system: random matrix models and tested[J]. IEEE Journals Magazines, 2015, 3: 837-851. doi: 10.1109/ACCESS.2015. 2433920. FANG X, FANG S, YING N, et al. The performance of massive MIMO systems under correlated channel[C]. IEEE International Conference on Networks (ICON), Singapore, 2013: 1-4. doi: 10.1109/ICON.2013.6781998. JIANG Z Y, MOLISCH A F, CAIRE G, et al. Achievable rates of FDD massive MIMO systems with spatial channel correlation[J]. IEEE Transactions on Wireless Communications, 2015, 14(5): 2868-2882. doi: 10.1109/TWC. 2015.2396058. RUSEK F, PERSSON D, BUON K L, et al. Scaling up MIMO: opportunities and challenges with very large arrays[J]. IEEE Signal Processing Magazines, 2013, 30(1): 40-60. doi: 10.1109/MSP.2011.2178495. KRISHNAN N, YATE R D, and MANDAYAM N B. Uplink linear receivers for multi-cell multiuser MIMO with pilot contamination: large system analysis[J]. IEEE Transactions on Wireless Communications, 2014, 13(8): 4360-4373. doi: 10.1109/TWC.2014.2320914. SAXENA V, FODOR G, and KARIPIDIS E. Mitigating pilot contamination by pilot reuse and power control schemes for massive MIMO systems[C]. Vehicular Technology Conference (VTC Spring), Glasgow, 2015: 1-6. doi: 10.1109/VTCSpring. 2015.7145932. NEUMANN D, JOHAM M, and UTSCHICK W. Suppression of pilot contamination in massive MIMO systems[C]. Signal Processing Advances in Wireless Communications(SPAWC), Toroto, ON, 2014: 11-15. doi: 10.1109/SPAWC.2014. 6941307. APPAIAH K, ASHIKHMIN A, and MARZETTA T L. Pilot contamination reduction in multi-user TDD systems[C]. 2010 IEEE International Conference on Communications(ICC), Cape Town, 2010: 1-5. doi: 10.1109/ICC.2010.5502810. JIN S, WANG X, LI Z, et al. On massive MIMO zero-forcing transceiver using time-shifted pilots[J]. IEEE Transactions on Vehicular Technology, 2016, 65(1): 59-74. doi: 10.1109/ TVT.2015.2391192. ZHAO Z, CHEN Z, and LIU Y. Cell sectorization-based pilot assignment scheme in massive MIMO systems[C]. IEEE Wireless Telecommunications Symposium (WTS), New York, 2015: 1-5. doi: 10.1109/WTS.2015.7117245. YAN X, YIN H, XIA M, et al. Pilot sequences allocation in TDD massive MIMO systems[C]. IEEE Wireless Communications and Networking Conference (WCNC), New Orleans, LA, 2015: 1488-1493. doi: 10.1109/WCNC.2015. 7127688. ZHU X D, WANG Z C, DAI L L, et al. Smart pilot assignment for massive MIMO[J]. IEEE Communications Letters, 2015, 19(9): 1644-1647. doi: 10.1109/LCOMM.2015. 2409176. -
計量
- 文章訪問數(shù): 1446
- HTML全文瀏覽量: 134
- PDF下載量: 599
- 被引次數(shù): 0