基于過完備字典稀疏表示的多通道腦電信號壓縮感知聯(lián)合重構(gòu)
doi: 10.11999/JEIT151079
-
1.
(福建師范大學(xué)數(shù)學(xué)與計算機科學(xué)學(xué)院 福州 350007) ②(西安交通大學(xué)生物醫(yī)學(xué)信息工程教育部重點實驗室 西安 710049)
國家科技支撐項目(2012BAI33B01),福建省自然科學(xué)基金項目(2013J01220),福建省高等學(xué)校教學(xué)改革研究項目(JAS14674),福建師范大學(xué)創(chuàng)新創(chuàng)業(yè)教育改革研究項目(D201503005)
A New Joint Reconstruction Algorithm of Compressed Sensing for Multichannel EEG Signals Based on Over-complete Dictionary Approach
-
1.
(School of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350007, China)
-
2.
(Key Laboratory of Biomedical Information Engineering of Education Ministry, Xi&rsquo
The National Science and Technology Supporting Project (2012BAI33B01), The Natural Science Foundation of Fujian Province (2013J01220), The Teaching Reform Project of University of Fujian Province (JAS14674), The Project of Education of Entrepreneurship and Innovation of Fujian Normal University (D201503005)
-
摘要: 該文基于多通道腦電信號時空特性構(gòu)建非正交變換過完備字典,準確稀疏表示蘊含時空相關(guān)性信息的多通道腦電信號,提高基于時空稀疏貝葉斯學(xué)習模型的多通道腦電信號壓縮感知聯(lián)合重構(gòu)算法性能。實驗選用eegmmidb腦電數(shù)據(jù)庫的多通道腦電信號驗證所提算法有效性。結(jié)果表明,基于過完備字典稀疏表示的多通道腦電信號,能夠為多通道腦電信號壓縮感知重構(gòu)算法提供更多的時空相關(guān)性信息,比傳統(tǒng)多通道腦電信號壓縮感知重構(gòu)算法所得的信噪比值提高近12 dB,重構(gòu)時間減少0.75 s,顯著提高多通道腦電信號聯(lián)合重構(gòu)性能。
-
關(guān)鍵詞:
- 腦電信號稀疏表示 /
- 過完備字典 /
- 聯(lián)合重構(gòu) /
- 時空稀疏貝葉斯學(xué)習 /
- 壓縮感知
Abstract: In this paper, the over-complete dictionary with nonorthogonal factor is firstly gained from Electro Encephalo Graph (EEG) signal with spatio-temporal characteristics, and then it is used to sparsely represent multichannel EEG signal for containing the information of spatio-temporal correlation. This contributes to enhance the performance of the joint reconstruction of multi-channel EEG signal using the Spatio-Temporal Sparse Bayesian Learning (STSBL) algorithm. The multi-channel EEG signal from the open eegmmidb database are selected to evaluate the effectiveness of the proposed algorithm. The experimental results show that the designed over-complete dictionary can provide more valuable information about the spatio-temporal characteristics in multichannel EEG signal for STSBL algorithm. When compared to the existing conventional compressed sensing technique for reconstruction multi-channel EEG signal, the signal-noise ratio of the proposed method increases by 12 dB and the reconstruction time decreases by 0.75 s, which significantly improve the performance of joint reconstruction of multichannel EEG signal. -
WESTOVER M B, SHAFI M, BIANCHI M T, et al. The probability of seizures during EEG monitoring in critically ill adults[J]. Clinical Neurophysiology Official Journal of the International Federation of Clinical Neurophysiology, 2015, 126(3): 463-471. doi: 10.1016/J.clinph.2014.05.037. KIM Y and LEE S K. Energy-efficient wireless hospital sensor networking for remote patient monitoring[J]. Information Sciences, 2014, 282: 332-349. doi: 10.1016/ j.ins.2014.05.056. DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/ TIT.2006.871582. FAUVEL S and WARD R K. An energy efficient compressed sensing framework for the compression of Electroencephalogram signals[J]. Sensors, 2014, 14(1): 1474-1496. doi: 10.3390/s140101474. LIU B, ZHANG Z, XU G, et al. Energy efficient telemonitoring of physiological signals via compressed sensing: a fast algorithm and power consumption evaluation[J]. IEEE Transactions on Biomedical Signal Processing and Control, 2013, 11(1): 80-88. doi: 10.1016/j.bspc.2014.02.010. CLIFTON L, CLIFTON D A, PIMENTEL M A, et al. Predictive monitoring of mobile patients by combining clinical observations with data from wearable sensor[J]. IEEE Journal of Biomedical and Health Informatics, 2014, 18(3): 722-730. doi: 10.1109/JBHI.2013.2293059. ZHANG Z, JUNG T P, MAKEIG S, et al. Compressed sensing of EEG for wireless telemonitoring with low energy consumption and inexpensive hardware[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(1): 221-224. doi: 10.1109/TBME.2012.2217959. DAI Y, WANG X, LI X, et al. Sparse EEG compressive sensing for web-enabled person identification[J]. Measurement, 2015, 74: 11-20. doi: 10.1016/j.measurement. 2015.07.008. BARANIUK R G, CEVHER V, DUARTE M F, et al. Model-based compressive sensing[J]. IEEE Transactions on Information Theory, 2010, 56(4): 1982-2001. doi: 10.1109/ TIT.2010.2040894. TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666. doi: 10.1109/TIT.2007.909108. DAI W and MILENKOVIC O. Subspace pursuit for compressive sensing signal reconstruction[J]. IEEE Transactions on Information Theory, 2009, 55(5): 2230-2249. doi: 10.1109/TIT.2009.2016006. MOHIMANI H, BABAIE-ZADEH M, and JUTTEN C. A fast approach for overcomplete sparse decomposition based on smoothed l0 norm[J]. IEEE Transactions on Signal Processing. 2009, 57(1): 289-301. doi: 10.1109/TSP.2008. 2007606. ZHANG Z, JUNG T P, MAKEIG S, et al. Compressed sensing for energy-efficient wireless telemonitoring of noninvasive fetal ECG via block sparse Bayesian learning[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(2): 300-309. doi: 10.1109/TBME.2012.2226175. 孫洪, 張智林, 余磊. 從稀疏到結(jié)構(gòu)化稀疏: 貝葉斯方法[J]. 信號處理, 2012, 28(6): 759-773. doi: 10.16798/j.issn.1003- 0530.2016.02.005. SUN Hong, ZHANG Zhilin, and YU Lei. From sparsity to structured sparsity: Bayesian perspective[J]. Signal Processing, 2012, 28(6): 759-773. doi: 10.16798/j.issn.1003- 0530.2016.02.005. ZHANG Z and RAO B D. Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation[J]. IEEE Transactions on Signal Processing, 2013, 61(8): 2009-2015. doi: 10.1109/TSP.2013.2241055. COTTER S F, RAO B D, ENGAN K, et al. Sparse solutions to linear inverse problems with multiple measurement vectors [J]. IEEE Transactions on Signal Processing, 2005, 53(7): 2477-2488. doi: 10.1109/TSP.2005.849172. ELDAR Y C and RAUHUT H. Average case analysis of multichannel sparse recovery using convex relaxation[J]. IEEE Transactions on Information Theory, 2010, 56(1): 505-519. doi: 10.1109/TIT.2009.2034789. ZHANG Z and RAO B D. Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 912-926. doi: 10.1109/JSTSP.2011. 2159773. ZHANG Z, JUNG T P, and MAKEIG S. Spatiotemporal sparse Bayesian learning with applications to compressed sensing of multichannel physiological signals[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22(6): 1186-1197. doi: 10.1109/TNSRE. 2014.2319334. 彭向東, 張華, 劉繼忠. 基于過完備字典的體域網(wǎng)壓縮感知心電重構(gòu)[J]. 自動化學(xué)報, 2014, 40(7): 1421-1432. doi: 10.3724/ SP.J.1004.2014.01421. PENG Xiangdong, ZHANG Hua, and LIU Jizhong. ECG reconstruction of body sensor network using compressed sensing based on overcomplete dictionary[J]. Acta Automatica Sinica, 2014, 40(7): 1421-1432. doi: 10.3724/SP.J. 1004.2014.01421. 孫林慧, 楊震, 季云云, 等. 基于過完備線性預(yù)測字典的壓縮感知語音重構(gòu)[J]. 儀器儀表學(xué)報, 2012, 33(4): 743-749. doi: 10.3969/j.issn.0254-3087.2012.04.004. SUN Linhui, YANG Zhen, JI Yunyun, et al. Reconstruction of compressed speech sensing based on overcomplete linear prediction dictionary[J]. Chinese Journal of Scientific Instrument, 2012, 33(4): 743-749. doi: 10.3969/j.issn.0254- 3087.2012.04.004. DONEVA M, BORNERT P, EGGERS H, et al. Compressed sensing reconstruction for magnetic resonance parameter mapping[J]. Magnetic Resonance in Medicine, 2010, 64(4): 1114-1120. doi: 10.1002/mrm.22483. AHARON M, ELAD M, and BRUCKSTEIN A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322. doi: 10.1109/TSP.2006.881199. SCHALLK G, MCFARLAND D J, HINTERBERGER T, et al. BCI2000: a general-purpose Brain-Computer Interface (BCI) system[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 1034-1043. doi: 10.1109/TBME. 2004.827072. -
計量
- 文章訪問數(shù): 1586
- HTML全文瀏覽量: 218
- PDF下載量: 562
- 被引次數(shù): 0