The Multifractal Properties of AR Spectrum and Weak Target Detection in Sea Clutter Background
Funds:
The National Ministries Fund (4010101030101)
-
摘要: 該文研究了海雜波功率譜的多重分形特性。為了克服頻譜傅里葉分析的缺點,用現(xiàn)代譜估計的方法來計算海雜波的功率譜。AR模型是一個線性預測模型,它通過序列的自相關函數(shù)矩陣來估計功率譜,并且具有更精確的頻譜分辨率。該文主要分析基于AR譜估計的海雜波功率譜的多重分形特性,以及在微弱目標檢測中的應用。首先,以分數(shù)布朗運動(FBM)模型為例,證明其功率譜具有多重分形特性。其次,根據X波段雷達的實測海雜波數(shù)據,通過多重去趨勢分析法(MF-DFA)驗證了海雜波AR譜的多重分形特性。最后,分析了海雜波AR譜的廣義Hurst指數(shù)以及影響參數(shù),并提出一種基于局部AR譜廣義Hurst指數(shù)的目標檢測方法。實驗結果表明,該種檢測方法具有海雜波背景下微弱目標檢測的能力。與現(xiàn)有的分形檢測方法和傳統(tǒng)的CFAR檢測方法對比,該算法在低信雜比情況下具有較好的檢測性能。Abstract: This paper focuses on the multifractal properties of sea clutter in power spectrum domain. To overcome the deficiencies of Fourier transform analysis, the power spectrum of the sea clutter is obtained by AutoRegressive (AR) spectrum estimation. The AR model is a linear predictive model, which estimates the power spectrum of sea clutter from its autocorrelation matrix and has a higher frequency resolution than Fourier analysis. This paper concentrates on analyzing the multifractal property of the power spectrum based on AR spectral estimation and its application to weak target detection. Firstly, Fractional Brownian Motion (FBM) is taken as an example to prove the multifractal property of the power spectrum. Then, real measured X-band data is used to verify the multifractal property of the AR spectrum of sea clutter by MultiFractal Detrended Fluctuation Analysis (MF-DFA) method. Finally, the generalized Hurst exponent of AR spectrum and its influence factors are analyzed, and a novel detection method based on local AR generalized Hurst exponent is proposed. The results show that the proposed method is effective for weak target detection in sea clutter background. Compared to the existing fractal method and the traditional CFAR method, the proposed method has a better detection performance in low SCR condition.
-
Key words:
- Target detection /
- Sea clutter /
- Multifractal /
- AR spectral estimation
-
MANDELBROT B. The Fractal Geometry of Nature [M]. New York: WH Freeman, 1982: 1-63. LO T, LEUNG H, HAYKIN S, et al. Fractal characterisation of sea scattered signals and detection of sea-surface targets[J]. IEE Proceedings F, Radar and Signal Processing, 1993, 140(4): 243-250. 孫康, 金鋼, 朱曉華. 基于波動分析的海上小目標檢測[J]. 電子與信息學報, 2013, 35(4): 882-887. doi: 10.3724/SP.J.1146. 2012.00927. SUN Kang, JIN Gang, and ZHU Xiaohua. Small target detection within sea clutter based on the fluctuation analysis[J]. Journal of Electronics Information Technology, 2013, 35(4): 882-887. doi: 10.3724/SP.J.1146.2012.00927. DU Gan and ZHANG Shouhong. Detection of sea-surface radar targets based on multifractal analysis[J]. Electronics Letters, 2000, 36(13): 1144-1145. 石志廣, 周劍雄, 付強. 基于多重分形模型的海雜波特性分析與仿真[J]. 系統(tǒng)仿真學報, 2006, 18(8): 2289-2292. SHI Zhiguang, ZHOU Jianxiong, and FU Qiang. Sea clutter characteristic analysis and simulation based on multi-fractal model[J]. Journal of System Simulation, 2006, 18(8): 2289-2292. 關鍵, 劉寧波, 張建, 等. 海雜波的多重分形關聯(lián)特性與微弱目標檢測[J]. 電子與信息學報, 2010, 32(1): 54-61. doi: 10.3724/SP.J.1146.2008.00980. GUAN Jian, LIU Ningbo, ZHANG Jian, et al. Multifractal correlation characteristic of real sea clutter and low- observable targets detection[J]. Journal of Electronics Information Technology, 2010, 32(1): 54-61. doi: 10.3724/ SP.J.1146.2008.00980. 孫康, 金剛, 朱曉華, 等. 基于Q-MMSPF的海雜波多重分形互相關分析及目標檢測[J]. 國防科技大學學報, 2013, 35(3): 170-175. SUN Kang, JIN Gang, ZHU Xiaohua, et al. Multifractal cross-correlation analysis of sea clutter and target detection based on Q-MMSPF[J]. Journal of National University of Defense Technology, 2013, 35(3): 170-175. HU J, TUNG, W W, and GAO J B. Detection of low observable targetswithin sea clutter by structure function based multifractal analysis[J]. IEEE Transactions on Antennas Propagation, 2006, 54(1): 135-143. LUO F, ZHANG D T, and ZHANG B. The fractal properties of sea clutter and their applications in maritime target detection[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1295-1299. 王福友, 羅釘, 季亞新, 等. 海雜波多分形特性分析及小目標檢測技術研究[J]. 信號處理, 2013, 29(2): 239-248. WANG Fuyou, LUO Ding, JI Yaxin, et al. Multifractal analysis of sea clutter and small target detection[J]. Journal of Signal Processing, 2013, 29(2): 239-248. 劉寧波, 黃勇, 關鍵, 等. 實測海雜波頻域分形特性分析[J]. 電子與信息學報, 2012, 34(4): 929-935. doi: 10.3724/SP.J. 1146.2011.00856. LIU Ningbo, HUANG Yong, GUAN Jian, et al. Fractal analysis of real sea clutter in frequency domain[J]. Journal of Electronics Information Technology, 2012, 34(4): 929-935. doi: 10.3724/SP.J.1146.2011.00856. 劉寧波, 關鍵, 宋杰, 等. 海雜波頻譜多重分形特性分析[J]. 中國科學: 信息科學, 2013, 43(6): 768-783. LIU Ningbo, GUAN Jian, SONG Jie, et al. Multifractal property of sea clutter frequency spectrum[J]. Science China: Information Sciences, 2013, 43(6): 768-783. 陳小龍, 劉寧波, 宋杰, 等. 海雜波FRFT域分形特征判別及動目標檢測方法[J]. 電子與信息學報, 2011, 33(4): 823-830. doi: 10.3724/SP.J.1146.2010.00486. CHEN Xiaolong, LIU Ningbo, SONG Jie, et al. Fractal feature discriminant of swa clutter in FRFT domain and moving target detection algorithm[J]. Journal of Electronics Information Technology, 2011, 33(4): 823-830. doi: 10.3724/SP.J.1146.2010.00486. 劉寧波, 關鍵, 王國慶, 等. 基于海雜波FRFT譜多尺度Hurst指數(shù)的目標檢測方法[J]. 電子學報, 2013, 41(9): 1847-1853. LIU Ningbo, GUAN Jian, WANG Guoqing, et al. Target detection within sea clutter based on multi-scale Hurst exponent in FRFT domain[J]. Acta Electronica Sinica, 2013, 41(9): 1847-1853. 宋杰, 劉寧波, 王國慶, 等. 海雜波FRFT譜的近似分形特性與目標檢測[J]. 宇航學報, 2013, 34(10): 1394-1402. SONG Jie, LIU Ningbo, WANG Guoqing, et al. Approximate fractality of sea clutter FRFT spectrum and target detection[J]. Journal of Astronautics, 2013, 34(10): 1394-1402. 劉寧波, 王國慶, 包中華, 等. 海雜波FRFT譜的多重分形特性與目標檢測[J]. 信號處理, 2013, 29(1): 1-8. LIU Ningbo, WANG Guoqing, BAO Zhonghua, et al. Multifractal properties of sea clutter FRFT spectrum for target detection[J]. Journal of Signal Processing, 2013, 29(1): 1-8. GAO J B, CAO Y, and LEE J M. Principal component analysis of noise [J]. Physics Letters A, 2003, 314(5/6): 392-400. CHANG Y C and CHANG S. A fast estimation algorithm on the Hurst parameter of discrete-time fractional Brownian motion[J]. IEEE Transactions on Signal Processing, 2002, 50(3): 554-559. KIM T S and KIM S. Singularity spectra of fractional Brownian motions as a multi-fractal[J]. Chaos Solitons Fractals, 2004, 19(3): 613-619. NOHAJA T J and HAYKIN S. AR-based growler detection in sea clutter[J]. IEEE Transactions on Signal Processing, 1993, 41(3): 1259-1270. MANDELBROT B and VAN NESS J W. Fractional Brownian motions, fractional noises and applications[J]. SIAM Review, 1968, 10(4): 422-437. KANTELHARDT J W, ZSCHIEGNER S A, KOSCIELNY- BUNDE E, et al. Multifractal detrended fluctuation analysis of nonstationary time series[J]. Physica A, 2002, 316: 87-114. DROSOPOULOS A. Description of the OHGR database[R]. Technical Note. 94-14, Defence Research Establishment, Ottawa, 1994: 1-30. 何友, 關鍵, 彭應寧. 雷達自動檢測與恒虛警處理[M]. 北京: 清華大學出版社, 1999: 230-268. HE You, GUAN Jian, and PENG Yingning. Automatic Radar Detection and CFAR Techniques[M]. Beijing: Tsinghua University Press, 1999: 230-268. -
計量
- 文章訪問數(shù): 1483
- HTML全文瀏覽量: 158
- PDF下載量: 513
- 被引次數(shù): 0