聯(lián)合發(fā)端天線選擇和收端人工噪聲的物理層安全傳輸方法
doi: 10.11999/JEIT141580
-
1.
(中國人民解放軍理工大學(xué)通信工程學(xué)院 南京 210007) ②(南京電訊技術(shù)研究所 南京 210007)
基金項(xiàng)目:
國家自然科學(xué)基金(61471392)
Hybrid Transmit Antenna Selection and Full-duplex Artificial-noise-added Receiver Scheme for Physical Layer Security Enhancement
-
1.
(Institute of Communications Engineering, PLA University of Science and Technology, Nanjing 210007, China)
-
2.
(Nanjing Telecommunication Technology Institute, Nanjing 210007, China)
-
摘要: 該文在同頻全雙工技術(shù)快速發(fā)展的背景下,針對物理層安全研究中波束成形技術(shù)的高復(fù)雜度和發(fā)端天線選擇(TAS)技術(shù)的低性能,提出一種聯(lián)合發(fā)端天線選擇和收端人工噪聲(AN)的物理層安全傳輸方法TAS-rAN。首先,有多根天線的發(fā)端,利用天線選擇技術(shù),選取能使合法接收方接收信噪比最大的天線發(fā)送保密消息;其次,有同頻全雙工能力的收端,在接收到消息的同時,發(fā)送人工噪聲來擾亂竊聽方對保密消息的竊聽。在Nakagami-m信道下,推導(dǎo)了安全中斷概率的閉合表達(dá)式,并基于此,得到非零安全容量的概率表達(dá)式;通過漸進(jìn)安全中斷概率的推導(dǎo),得到TAS-rAN方法的安全分集度。仿真結(jié)果表明,與已有的TAS-single和TAS-Alamouti方法相比,TAS-rAN安全方法具有較強(qiáng)的穩(wěn)定性,且能提供更優(yōu)的安全性能。
-
關(guān)鍵詞:
- 物理層安全 /
- 發(fā)射端天線選擇 /
- 人工噪聲 /
- 同頻全雙工 /
- 安全中斷概率
Abstract: With the fast development of full-duplex technology in the same band, a novel hybrid scheme called Transmit Antenna Selection-receivever Artifical Noise (TAS-rAN), is proposed for lower complexity of beam- forming scheme and higher security of TAS in MISO wiretap channels. In this scheme, by using TAS protocol, the transmitter first selects a single antenna that maximizes the instantaneous Signal-to-Noise Ratio (SNR) at the full-duplex receiver. While the transmitter uses this antenna to transmit secrecy data, the full-duplex receiver sends Artificial Noise (AN) to confuse the potential eavesdropper. For the proposed protocol, Nakagami-m fading channels with different parameters for the main channel and the eavesdropper,s channel is considered, and a new closed-form expression for the exact secrecy outage probability is derived. The numerical simulation results demonstrate that the proposed TAS-rAN protocol is a robust secure system, and can offer higher secure performances than both existed single TAS-single and TAS-Alamouti schemes. -
Shiu Y S, Chang S Y, Wu H C, et al.. Physical layer security in wireless networks: A tutorial[J]. IEEE Wireless Communications, 2011, 18(2): 66-74. Wyner A D. The wire-tap channel[J]. Bell System Technical Journal, 1975, 54(8): 1355-1387. Mukherjee A, Fakoorian S A, Huang J, et al.. Principles of physical layer security in multiuser wireless networks: a survey[J]. IEEE Communications Surveys Tutorials, 2014, 16(3): 1550-1573. Oggier F and Hassibi B. The secrecy capacity of the MIMO wiretap channel[J]. IEEE Transactions on Information Theory, 2011, 57(8): 4961-4972. Hong Y W P, Lan P-C, and Kuo C C J. Enhancing physical-layer secrecy in multiantenna wireless systems: an overview of signal processing approaches[J]. IEEE Signal Processing Magazine, 2013, 30(5): 29-40. Yang N, Elkashlan M, Yeoh P L, et al.. An introduction to transmit antenna selection in MIMO wiretap channels[J]. ZTE Communications, 2013, 11(3): 26-32. Goel S and Negi R. Guaranteeing secrecy using artificial noise [J]. IEEE Transactions on Wireless Communications, 2008, 7(6): 2180-2189. Alves H, Souza R D, and Debbah M. Enhanced physical layer security through transmit antenna selection[C]. Proceedings of the IEEE GlobeCOM Workshops, Houston, TX, USA, 2011: 879-883. Alves H, Souza R D, Debbah M, et al.. Performance of transmit antenna selection physical layer security schemes[J]. IEEE Signal Processing Letters, 2012, 19(6): 372-375. Yang N, Yeoh P L, Elkashlan M, et al.. Transmit antenna selection for security enhancement in MIMO wiretap channels[J]. IEEE Transactions on Communications, 2013, 61(1): 144-154. Yang N, Suraweera H A, Collings I B, et al.. Physical layer security of TAS/MRC with antenna correlation[J]. IEEE Transactions on Information Forensics and Security, 2013, 8(1): 254-259. Yeoh P L, Elkashlan M, Yang N, et al.. Unified analysis of transmit antenna selection in MIMO multirelay networks[J]. IEEE Transactions on Vehicular Technology, 2013, 62(2): 933-939. Yang N, Yeoh P L, Elkashlan M, et al.. MIMO wiretap channels: secure transmission using transmit antenna selection and receive generalized selection combining[J]. IEEE Communications Letters, 2013, 17(9): 1754-1757. Yan S, Yang N, Malaney R, et al.. Transmit antenna selection with Alamouti coding and power allocation in MIMO wiretap channels[J]. IEEE Transactions on Wireless Communications, 2014, 13(3): 1656-1667. Liang T, Zhang Y J, Yuan G B, et al.. Joint transmit antenna selection and artificial noise for security in MIMO wiretap channels[C]. Applied Mechanicas and Materials, 2014, Vols. 541-542: 1452-1457. Bharadia D, McMilin E, and Katti S. Full duplex radios[C]. Preceedings of the ACM SigCom, Hong Kong, China, 2013: 1-12. Li W, Ghogho M, Chen B, et al.. Secure communication via sending artificial noise by the receiver: outage secrecy capacity/region analysis[J]. IEEE Communications Letters, 2012, 16(10): 1628-1631. Zheng G, Krikidis I, Li J, et al.. Improving physical layer secrecy using full-duplex jamming receivers[J]. IEEE Transactions on Signal Processing, 2013, 61(20): 4962-4974. Zhou X, McKay M, Maham B, et al.. Rethinking the secrecy outage formulation: a secure transmission design perspective [J]. IEEE Communications Letters, 2011, 15(3): 302-304. Gradshteyn I S and Ryzhik I M. Table of Integrals, Series, and Products[M]. San Diego, CA, USA, Elsevier, Inc., 2007: 25, 337, 340-341. -
計(jì)量
- 文章訪問數(shù): 1590
- HTML全文瀏覽量: 113
- PDF下載量: 589
- 被引次數(shù): 0