基于規(guī)則變量節(jié)點度和擴展窗噴泉碼的不等差錯保護算法
doi: 10.11999/JEIT141530 cstr: 32379.14.JEIT141530
基金項目:
國家自然科學基金(61371125)資助課題
Novel Scheme of Unequal Error Protection Based on Regularized Variable-node and Expanding Window Fountain Codes
-
摘要: 該文提出了一種可適用于加性高斯白噪聲(AWGN)信道的融合擴展窗噴泉碼(Expanding Window Fountain, EWF)和規(guī)則變量節(jié)點度LT碼(Regularized variable-node Luby Transform, RLT)策略的不等差錯保護(UEP)算法,稱為EWF-RLT編碼算法。首先利用擴展窗口技術給不同重要等級的數(shù)據(jù)加窗,編碼時讓較高重要等級數(shù)據(jù)以更高的概率參與編碼;同時,結合規(guī)則變量節(jié)點度算法,改變傳統(tǒng)LT 碼編碼過程中隨機選取鄰居節(jié)點的編碼方式,使較高重要等級的數(shù)據(jù)具有較大的最小變量節(jié)點度,改善錯誤平層現(xiàn)象。分析和仿真結果表明,該文提出的EWF-RLT算法與傳統(tǒng)算法相比,能對較高重要等級數(shù)據(jù)進行更強的保護,提升網(wǎng)絡傳輸質量;在UEP方案設計中,加入RLT碼編碼參數(shù),使得該文方案更加靈活與適用。
-
關鍵詞:
- 噴泉碼 /
- 加性高斯白噪聲信道 /
- 不等差錯保護 /
- 擴展窗噴泉碼 /
- 規(guī)則變量節(jié)點度
Abstract: A novel scheme named EWF-RLT codes, which produces Unequal Error Protection (UEP) for Luby Transform (LT) codes over Additive White Gaussian Noise (AWGN) channel by using a windowing technique before regularizing variable-node distribution, is proposed in this paper. Firstly, the idea of windowing the data sets according to their protection requirements is applied to allow coded symbols to make more edge connections with more important parts of the information bit stream with high probability. Then, variable-node degree distribution is exploited to improve the error floor and ensure the more important class of information bit stream have a higher minimum variable-node degree by modifying the traditional method of choosing neighbor nodes randomly in encoding. Compared with the conventional UEP scheme, what is confirmed both theoretically and experimentally is that the proposed approach can provide significant performance improvement in the most important bits class and improve network transmission performance. Furthermore, the proposed scheme introduces additional parameters in the UEP LT code design, making it more general and flexible in terms of the realization of UEP scheme. -
Luby M. LT codes[C]. Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, Vancouver, Canada, 2002, 43: 271-280. Shokrollahi A. Raptor codes[J]. IEEE Transactions on Information Theory, 2007, 58(4): 2551-2567. Anglano C, Gaeta R, and Grangetto M. Exploiting rateless codes in cloud storage systems[J]. IEEE Transactions on Parallel and Distributed Systems, 2014, (99): 1-11. Blatsas M, Politis I, Kotsopoulos S A, et al.. A performance study of LT based unequal error protection for 3D video streaming[C]. Digital Signal Processing (DSP) of the 18th International Conference, Santorini, Greece, 2013, 1(6): 1-3. 劉國, 于文慧, 吳家驥, 等. 基于系統(tǒng)Raptor碼不等差錯保護的圖像壓縮傳輸[J]. 電子與信息學報, 2013, 35(11): 2554-2559. Liu Guo, Yu Wen-hui, Wu Jia-ji, et al.. Compressed image transmission based on systematic Raptor codes with unequal error protection[J]. Journal of Electronics Information Technology, 2013, 35(11): 2554-2559. Palanki R and Yedidia J. Rateless codes on noisy channels[C]. Proceedings of the International Symposium on Information Theory (ISIT), Chicago, USA, 2004: 37. 陳月云, 劉偉. 基于新型隨機度分布的壓縮噴泉碼[J]. 電子與信息學報, 2012, 34(5): 1185-1190. Chen Yue-yun and Liu Wei. Compressed fountian codes based on new random degree distribution[J]. Journal of Electronics Information Technology, 2012, 34(5): 1185-1190. Rahnavard N, Vellambi B, and Fekri F. Rateless codes with unequal error protection property[J]. IEEE Transactions on Information Theory, 2007, 53(4): 1521-1532. Sejdinovic D, Vukobratovic D, Doufexi A, et al.. Expanding window fountain codes for unequal error protection[J]. IEEE Transactions on Communication, 2009, 57(9): 2510-2516. Tu Kun, Zhang Zhao-yang, Yao Chuang-mu, et al.. Rateless codes with unequal error protection based on improved weighted selection[C]. IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), London, United Kingdom, 2013, 342(347): 8-11. Sorensen J H, Popovski P, and Ostergaard J. UEP LT codes with intermediate feedback[J]. IEEE Communications Letters, 2013, 17(8): 1636-1639. Yue Jing, Lin Zi-huai, Ba Bao-ming, et al.. Performance analysis of unequal error protection distributed network coding based on fountain codes[J]. Wireless Communications Letters, 2014, 3(3): 285-288. Mahyar Shirvanimoghaddam, Li Yong-hui, and Branka Vucetic. Analog fountain codes with unequal error protection[C]. Proceedings of the IEEE International Conference on Communications (ICC), Sydney, NSW, Australia, 2014: 2033-2038. Hussain I, Xiao M, and Rasmussen L K. Error floor analysis of LT codes over the additive white Gaussian noise channel[C]. Proceedings of the IEEE Global Telecommunications Conference, Houston, USA, 2011: 1-5. Hussain I, Xiao M, and Rasmussen L K. Unequal error protection of LT codes over noisy channels[C]. Proceedings of the IEEE Communication Technologies Workshop (Swe- CTW), Lund, Sweden, 2012: 24-26. Garcia-Frias J and Zhong W. Approaching Shannon performance by iterative decoding of linear codes with low-density generator matrix[J]. IEEE Communications Letters, 2003, 7(6): 266-268. Hussain I, Xiao M, and Rasmussen L K. Regularized variable-node LT codes with improved erasure floor performance[C]. Proceedings of the IEEE Information Theory and Applications (ITA) Workshop, San Diego, USA, 2013: 1-8. Hussain I, Xiao M, and Rasmussen L K. Serially concatenated LT code with DQPSK modulation[C]. Proceedings of the IEEE Wireless Communication and Networking Conference (WCNC), Cancun, Mexico, 2011: 1811-1816. -
計量
- 文章訪問數(shù): 1452
- HTML全文瀏覽量: 107
- PDF下載量: 424
- 被引次數(shù): 0