一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

不確定系統(tǒng)魯棒協(xié)方差交叉融合穩(wěn)態(tài)Kalman濾波器

王雪梅 劉文強 鄧自立

王雪梅, 劉文強, 鄧自立. 不確定系統(tǒng)魯棒協(xié)方差交叉融合穩(wěn)態(tài)Kalman濾波器[J]. 電子與信息學報, 2015, 37(8): 1900-1905. doi: 10.11999/JEIT141515
引用本文: 王雪梅, 劉文強, 鄧自立. 不確定系統(tǒng)魯棒協(xié)方差交叉融合穩(wěn)態(tài)Kalman濾波器[J]. 電子與信息學報, 2015, 37(8): 1900-1905. doi: 10.11999/JEIT141515
Wang Xue-mei, Liu Wen-qiang, Deng Zi-li. Robust Covariance Intersection Fusion Steady-state Kalman Filter for Uncertain Systems[J]. Journal of Electronics & Information Technology, 2015, 37(8): 1900-1905. doi: 10.11999/JEIT141515
Citation: Wang Xue-mei, Liu Wen-qiang, Deng Zi-li. Robust Covariance Intersection Fusion Steady-state Kalman Filter for Uncertain Systems[J]. Journal of Electronics & Information Technology, 2015, 37(8): 1900-1905. doi: 10.11999/JEIT141515

不確定系統(tǒng)魯棒協(xié)方差交叉融合穩(wěn)態(tài)Kalman濾波器

doi: 10.11999/JEIT141515
基金項目: 

國家自然科學基金(60874063, 60374026)

Robust Covariance Intersection Fusion Steady-state Kalman Filter for Uncertain Systems

  • 摘要: 針對帶不確定模型參數(shù)和噪聲方差的線性離散多傳感器系統(tǒng),基于極大極小魯棒估值原理,該文提出一種魯棒協(xié)方差交叉(CI)融合穩(wěn)態(tài)Kalman濾波器。首先,用引入虛擬噪聲補償不確定模型參數(shù),把模型參數(shù)和噪聲方差兩者不確定的多傳感器系統(tǒng)轉(zhuǎn)化為僅噪聲方差不確定的系統(tǒng)。其次,應用Lyapunov方程證明局部魯棒Kalman濾波器的魯棒性,進而保證CI融合Kalman濾波的魯棒性,且證明了CI融合器的魯棒精度高于每個局部濾波器的魯棒精度。最后,給出一個仿真例子來說明如何搜索不確定參數(shù)的魯棒域,并驗證所提出的魯棒Kalman濾波器的優(yōu)良性能。
  • Hall D L and Llinas J. An introduction to multisensor data fusion[J]. Proceedings of the IEEE, 1997, 85(1): 6-23.
    Julier S J and Uhlmann J K. General Decentralized Data Fusion with Covariance Intersection. Handbook of Multisensor Data Fusion: Theory and Practice[M]. Second Edition, New York: CRC Press, 2008: 319-342.
    Hajiyev C G and Soken H E. Robust adaptive Kalman filter for estimation of UAV dynamics in the presence of sensor/ actuator faults[J]. AerospaceScience and Technology, 2013, 28(1): 376-383.
    Le M S, Shin H S, Markham K, et al..?Cooperative allocation and guidance for air defence application[J]. Control Engineering Practice, 2014, 32:?236-244.
    Feng J X, Wang Z D, and Zeng M. Distributed weighted robust Kalman filter fusion for uncertain systems with autocorrelated and cross-correlated noises[J]. Information Fusion, 2013, 14(1): 78-86.
    Li X R, Zhu Y M, and Han C Z. Optimal linear estimation fusion-Part I: Unified fusion rules[C]. IEEE Transations on Information Theory, 2003, 49(9): 2192-2208.
    Julier S J and Uhlmann J K. Non-divergent estimation algorithm in the presence of unknown correlations[C]. Proceedings of the IEEE American Control Conference, Albuquerque, 1997: 2369-2373.
    Uhlmann J K. Covariance consistency methods for fault-tolerant distributed data fusion[J]. Information Fusion, 2003, 4(3): 201-215.
    Julier S J and Uhlmann J K. Using covariance intersection for SLAM[J]. Robotics and Autonomous Systems, 2007, 55(1): 3-20.
    Sijs J and Lazar M. State fusion with unknown correlation: Ellipsoidal intersection[J]. Automatica, 2012, 48: 1874-1878.
    Lazarus S B, Tsourdos A, Zbikowski R, et al.. Robust localisation using data fusion via integration of covariance intersection and interval analysis[C]. International Conference on Control, Automation and Systems COEX, Seoul, Korea, 2007: 199-206.
    Ferreira J and Waldmann J. Covariance intersection-based sensor fusion for sounding rocket tracking and impact area prediction[J]. Control Engineering Practice, 2007, 15(4): 389-409.
    Qi W J, Zhang P, and Deng Z L. Robust sequential covariance intersection fusion kalman filtering over multi-agent sensor networks with measurement delays and uncertain noise variances[J]. Acta Automatica Sinica, 2014, 40(11): 2632-2642.
    Gao Q, Chen S Y, Leung H R, et al.. Covariance intersection based image fusion technique with application to pansharpening in remote sensing[J]. Information Sciences, 2010, 180(18): 3434-3443.
    Deng Z L, Zhang P, Qi W J, et al.. Sequential covariance intersection fusion Kalman filter[J]. Information Sciences, 2012, 189: 293309.
    Sriyananda H. A simple method for the control of divergence in Kalman filter algorithms[J]. International Journal of Control, 1972, 16(6): 1101-1106.
    Lewis F L, Xie L H, and Popa D. Optimal and Robust Estimation[M]. Second Edition, New York: CRC Press, 2007: 315-340.
    Qu X M and Zhou J. The optimal robust finite-horizon Kalman filtering for multiple sensors with different stochastic failure rates[J]. Applied Mathematics Letters, 2013, 26(1): 80-86.
    Deng Z L, Zhang P, Qi W J, et al.. The accuracy comparison of multisensor covariance intersection fuser and three weighting fusers[J]. Information Fusion, 2013, 14(2): 177-185.
    Qi W J, Zhang P, and Deng Z L. Robust weighted fusion Kalman filters for multisensor time-varying systems with uncertain noise variances[J]. Signal Processing, 2014(99): 185-200.
    Qi W J, Zhang P, Nie G H, et al.. Robust weighted fusion Kalman predictors with uncertain noise variances[J]. Digital Signal Processing, 2014(30): 37-54.
    Qi W J, Zhang P, and Deng Z L. Robust weighted fusion time-varying Kalman smoothers for multisensory system with uncertain noise variances[J]. Information Sciences, 2014 (282): 15-37.
    Qu X M. A mini-max fusion strategy in distributedmulti- sensor system[C]. International Conference on System Science and Engineering, Xiamen, China, 2012: 330-333.
    Kailath T, Sayed A H, and Hassibi B. Linear Estimation[M]. New York: Prentice Hall, 2000, 766-772.
  • 加載中
計量
  • 文章訪問數(shù):  1389
  • HTML全文瀏覽量:  103
  • PDF下載量:  630
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2014-11-27
  • 修回日期:  2015-03-27
  • 刊出日期:  2015-08-19

目錄

    /

    返回文章
    返回