不確定系統(tǒng)魯棒協(xié)方差交叉融合穩(wěn)態(tài)Kalman濾波器
doi: 10.11999/JEIT141515
-
2.
(黑龍江大學電子工程學院 哈爾濱 150080) ②(黑龍江工商學院計算機科學與技術系 哈爾濱 150025)
基金項目:
國家自然科學基金(60874063, 60374026)
Robust Covariance Intersection Fusion Steady-state Kalman Filter for Uncertain Systems
-
2.
(Electronic Engineering College, Heilongjiang University, Harbin 150080, China)
-
摘要: 針對帶不確定模型參數(shù)和噪聲方差的線性離散多傳感器系統(tǒng),基于極大極小魯棒估值原理,該文提出一種魯棒協(xié)方差交叉(CI)融合穩(wěn)態(tài)Kalman濾波器。首先,用引入虛擬噪聲補償不確定模型參數(shù),把模型參數(shù)和噪聲方差兩者不確定的多傳感器系統(tǒng)轉(zhuǎn)化為僅噪聲方差不確定的系統(tǒng)。其次,應用Lyapunov方程證明局部魯棒Kalman濾波器的魯棒性,進而保證CI融合Kalman濾波的魯棒性,且證明了CI融合器的魯棒精度高于每個局部濾波器的魯棒精度。最后,給出一個仿真例子來說明如何搜索不確定參數(shù)的魯棒域,并驗證所提出的魯棒Kalman濾波器的優(yōu)良性能。
-
關鍵詞:
- 多傳感器信息融合 /
- 不確定系統(tǒng) /
- 魯棒Kalman濾波器 /
- 虛擬噪聲 /
- 協(xié)方差交叉融合
Abstract: For the linear discrete time multisensor system with uncertain model parameters and noise variances, a Covariance Intersection (CI) fusion robust steady-state Kalman filter based on the minimax robust estimation principle is presented. Firstly, introducing the fictitious noise, the model parameter uncertainty can be compensated, so the multisensory system with both the model parameter and noise variance uncertainties is converted into that with only uncertain noise variances. Secondly, using the Lyapunov equation, the robustness of the local robust Kalman filter is proved, so the robustness of the CI fused Kalman filter is guaranteed and it is proved that the robust accuracy of the CI fuser is higher than that of each local filter. Finally, a simulation example shows that how to search the robust region of uncertain parameters and shows the good performance of the proposed robust Kalman filter. -
Hall D L and Llinas J. An introduction to multisensor data fusion[J]. Proceedings of the IEEE, 1997, 85(1): 6-23. Julier S J and Uhlmann J K. General Decentralized Data Fusion with Covariance Intersection. Handbook of Multisensor Data Fusion: Theory and Practice[M]. Second Edition, New York: CRC Press, 2008: 319-342. Hajiyev C G and Soken H E. Robust adaptive Kalman filter for estimation of UAV dynamics in the presence of sensor/ actuator faults[J]. AerospaceScience and Technology, 2013, 28(1): 376-383. Le M S, Shin H S, Markham K, et al..?Cooperative allocation and guidance for air defence application[J]. Control Engineering Practice, 2014, 32:?236-244. Feng J X, Wang Z D, and Zeng M. Distributed weighted robust Kalman filter fusion for uncertain systems with autocorrelated and cross-correlated noises[J]. Information Fusion, 2013, 14(1): 78-86. Li X R, Zhu Y M, and Han C Z. Optimal linear estimation fusion-Part I: Unified fusion rules[C]. IEEE Transations on Information Theory, 2003, 49(9): 2192-2208. Julier S J and Uhlmann J K. Non-divergent estimation algorithm in the presence of unknown correlations[C]. Proceedings of the IEEE American Control Conference, Albuquerque, 1997: 2369-2373. Uhlmann J K. Covariance consistency methods for fault-tolerant distributed data fusion[J]. Information Fusion, 2003, 4(3): 201-215. Julier S J and Uhlmann J K. Using covariance intersection for SLAM[J]. Robotics and Autonomous Systems, 2007, 55(1): 3-20. Sijs J and Lazar M. State fusion with unknown correlation: Ellipsoidal intersection[J]. Automatica, 2012, 48: 1874-1878. Lazarus S B, Tsourdos A, Zbikowski R, et al.. Robust localisation using data fusion via integration of covariance intersection and interval analysis[C]. International Conference on Control, Automation and Systems COEX, Seoul, Korea, 2007: 199-206. Ferreira J and Waldmann J. Covariance intersection-based sensor fusion for sounding rocket tracking and impact area prediction[J]. Control Engineering Practice, 2007, 15(4): 389-409. Qi W J, Zhang P, and Deng Z L. Robust sequential covariance intersection fusion kalman filtering over multi-agent sensor networks with measurement delays and uncertain noise variances[J]. Acta Automatica Sinica, 2014, 40(11): 2632-2642. Gao Q, Chen S Y, Leung H R, et al.. Covariance intersection based image fusion technique with application to pansharpening in remote sensing[J]. Information Sciences, 2010, 180(18): 3434-3443. Deng Z L, Zhang P, Qi W J, et al.. Sequential covariance intersection fusion Kalman filter[J]. Information Sciences, 2012, 189: 293309. Sriyananda H. A simple method for the control of divergence in Kalman filter algorithms[J]. International Journal of Control, 1972, 16(6): 1101-1106. Lewis F L, Xie L H, and Popa D. Optimal and Robust Estimation[M]. Second Edition, New York: CRC Press, 2007: 315-340. Qu X M and Zhou J. The optimal robust finite-horizon Kalman filtering for multiple sensors with different stochastic failure rates[J]. Applied Mathematics Letters, 2013, 26(1): 80-86. Deng Z L, Zhang P, Qi W J, et al.. The accuracy comparison of multisensor covariance intersection fuser and three weighting fusers[J]. Information Fusion, 2013, 14(2): 177-185. Qi W J, Zhang P, and Deng Z L. Robust weighted fusion Kalman filters for multisensor time-varying systems with uncertain noise variances[J]. Signal Processing, 2014(99): 185-200. Qi W J, Zhang P, Nie G H, et al.. Robust weighted fusion Kalman predictors with uncertain noise variances[J]. Digital Signal Processing, 2014(30): 37-54. Qi W J, Zhang P, and Deng Z L. Robust weighted fusion time-varying Kalman smoothers for multisensory system with uncertain noise variances[J]. Information Sciences, 2014 (282): 15-37. Qu X M. A mini-max fusion strategy in distributedmulti- sensor system[C]. International Conference on System Science and Engineering, Xiamen, China, 2012: 330-333. Kailath T, Sayed A H, and Hassibi B. Linear Estimation[M]. New York: Prentice Hall, 2000, 766-772. -
計量
- 文章訪問數(shù): 1389
- HTML全文瀏覽量: 103
- PDF下載量: 630
- 被引次數(shù): 0