一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

電話語音識別中基于統(tǒng)計模型的動態(tài)通道

韓兆兵 張化云 張樹武 徐波

韓兆兵, 張化云, 張樹武, 徐波. 電話語音識別中基于統(tǒng)計模型的動態(tài)通道[J]. 電子與信息學(xué)報, 2004, 26(11): 1714-1720.
引用本文: 韓兆兵, 張化云, 張樹武, 徐波. 電話語音識別中基于統(tǒng)計模型的動態(tài)通道[J]. 電子與信息學(xué)報, 2004, 26(11): 1714-1720.
Han Zhao-bing, Zhang Hua-yun, Zhang Shu-wu, Xu Bo. Dynamic Channel Compensation Based on Statistical Model for Mandarin Speech Recognition over Telephone[J]. Journal of Electronics & Information Technology, 2004, 26(11): 1714-1720.
Citation: Han Zhao-bing, Zhang Hua-yun, Zhang Shu-wu, Xu Bo. Dynamic Channel Compensation Based on Statistical Model for Mandarin Speech Recognition over Telephone[J]. Journal of Electronics & Information Technology, 2004, 26(11): 1714-1720.

電話語音識別中基于統(tǒng)計模型的動態(tài)通道

Dynamic Channel Compensation Based on Statistical Model for Mandarin Speech Recognition over Telephone

  • 摘要: 與桌面環(huán)境相比,電話網(wǎng)絡(luò)環(huán)境下的語音識別率仍然還比較低,為了推動電話語音識別在實際中的應(yīng)用,提高其識別率成了當(dāng)務(wù)之急.先前的研究表明,電話語音識別率明顯下降通常是因為測試和訓(xùn)練環(huán)境的電話通道不同引起數(shù)據(jù)失配造成的,因此該文提出基于統(tǒng)計模型的動態(tài)通道補償算法(SMDC)減少它們之間的差異,采用貝葉斯估計算法動態(tài)地跟蹤電話通道的時變特性.實驗結(jié)果表明,大詞匯量連續(xù)語音識別的字誤識率(CER)相對降低約27%,孤立詞的詞誤識率(WER)相對降低約30%.同時,算法的結(jié)構(gòu)時延和計算復(fù)雜度也比較?。骄鶗r延約200ms.可以很好地嵌入到實際電話語音識別應(yīng)用中.
  • Moreno P J, Siegler M A, Jain U, Stern R. M. Continuous speech recognition of large vocabulary telephone quality speech. Proc. of the Eighth Spoken Language Systems Technology Workshop,Austin, Texas, 1995.[2]Besacier L, Grassi S, Dufaux A, Ansorge M, Pellandini F. GSM speech coding and speaker recognition. Proc. of ICASSP 2000, Istanbul, Turkey, June 2000: 1085-1088.[3]Huerta J M. Speech recognition in mobile environments. [Ph.D. Thesis]: School of Computer Science, Carnegie Mellon University, Apr. 2000.[4]Hermansky H, Morgan N. RASTA processing of speech[J].IEEE Trans. on Speech and Audio Processing.1994, 2(4):578-589[5]Rahim M G, Juang Biing-Hwang. Signal bias removal by maximum likelihood estimation for robust telephone speech recognition[J].IEEE Trans. on Speech and Audio Processing.1996, 4(1):19-30[6]Sankar Ananth, Lee Chin-Hui. A maximum-likelihood approach to stochastic matching for robust speech recognition[J].IEEE Trans. on Speech and Audio Processing.1996, 4(3):190-202[7]Moreno P J. Speech recognition in noisy environments. [Ph.D. Thesis]: School of Computer Science, Carnegie Mellon University, April 22, 1996.[8]Westphal M. The use of cepstral means in conversational speech recognition. Proc. of Eurospeech 97, Greece, 1997: 1143-1146.[9]Chien Jen-Tzung.[J].Wang Hsiao-Chuan, Lee Lee-Min. Estimation of channel bias for telephone speech recognition. In Proc. ICSLP96, Philadelphia USA.1996,:-Veth J D.[J].Boves L. Comparison of channel normalization techniques for automatic speech recognition over the phone. In Proc. ICSLP96, Philadelphia USA.1996,:-
  • 加載中
計量
  • 文章訪問數(shù):  2321
  • HTML全文瀏覽量:  115
  • PDF下載量:  619
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2003-06-12
  • 修回日期:  2004-03-23
  • 刊出日期:  2004-11-19

目錄

    /

    返回文章
    返回