論文元數(shù)據(jù)搜索,找到相關(guān)信息共 17 條:
2000, 22(1): 68-72.
刊出日期:2000-01-19
關(guān)鍵詞:
移位寄存器序列; de Bruijn序列; 循環(huán)圈
本文給出一種de Bruijn序列的升元算法。該算法每步運(yùn)算可生成一列元素而不是一個(gè)元素,因而減少了運(yùn)算次數(shù),加快了生成速度。
1993, 15(2): 204-207.
刊出日期:1993-03-19
關(guān)鍵詞:
De Druijn序列; 齊次復(fù)雜度; 矩陣; 矩陣的秩
De Bruijn序列是一類最重要的非線性移位寄存器序列。本文定義并研究了n級(jí)De Bruijn序列的k次齊次復(fù)雜度Ck(s),給出了Ck(s)的一個(gè)上界。k=1及k=2時(shí),Ck(s)分別為人們所熟知的線性復(fù)雜度及二次齊次復(fù)雜度。
1995, 17(6): 618-622.
刊出日期:1995-11-19
關(guān)鍵詞:
移位寄存器; De Bruijn序列; 循環(huán)圈
De Bruijn序列是一類最重要的非線性移位寄存器序列。本文通過(guò)并置所有循環(huán)圈的周期約化,提出了一個(gè)新的生成k元de Bruijn序列的算法。該算法每步運(yùn)算可生成一列元素而不是一個(gè)元素,因此減少了運(yùn)算次數(shù),加快了生成速度。
2015, 37(8): 1994-1999.
doi: 10.11999/JEIT141635
刊出日期:2015-08-19
該文分析了He等人(2014)提出的無(wú)證書簽名方案和Ming等人(2014)提出的無(wú)證書聚合簽名方案的安全性,指出Ming方案存在密鑰生成中心(KGC)被動(dòng)攻擊,He方案存在KGC被動(dòng)攻擊和KGC主動(dòng)攻擊。該文描述了KGC對(duì)兩個(gè)方案的攻擊過(guò)程,分析了兩個(gè)方案存在KGC攻擊的原因,最后對(duì)Ming方案提出了兩類改進(jìn)。改進(jìn)方案不僅克服了原方案的安全性問(wèn)題,同時(shí)也保持了原方案聚合簽名長(zhǎng)度固定的優(yōu)勢(shì)。
2006, 28(8): 1415-1417.
刊出日期:2006-08-19
關(guān)鍵詞:
數(shù)字簽名;代理簽名;多重代理;多重簽名
為克服多重代理簽名方案中無(wú)法確認(rèn)誰(shuí)是真正簽名者的弱點(diǎn),Sun于1999年提出了不可否認(rèn)的代理簽名方案。2000年Hwang等人指出Sun的方案不安全,并對(duì)Sun的方案進(jìn)行了改進(jìn),2004年 Tzeng, Tan, Yang各自對(duì)Hwang等人的方案進(jìn)行了安全性分析,指出Hwang方案容易受到內(nèi)部偽造攻擊。該文通過(guò)讓原始簽名組與代理簽名組互動(dòng)來(lái)實(shí)現(xiàn)秘密共享和密鑰分配的方法,設(shè)計(jì)了一種新的安全的多重代理、多重簽名方案,它能夠滿足不可否認(rèn)性和不可偽造性的要求。
2015, 37(8): 1971-1977.
doi: 10.11999/JEIT141604
刊出日期:2015-08-19
為了分析ZUC序列密碼算法在相關(guān)性能量分析攻擊方面的免疫能力,該文進(jìn)行了相關(guān)研究。為了提高攻擊的針對(duì)性,該文提出了攻擊方案的快速評(píng)估方法,并據(jù)此給出了ZUC相關(guān)性能量分析攻擊方案。最后基于ASIC開發(fā)環(huán)境構(gòu)建仿真驗(yàn)證平臺(tái),對(duì)攻擊方案進(jìn)行了驗(yàn)證。實(shí)驗(yàn)結(jié)果表明該方案可成功恢復(fù)48 bit密鑰,說(shuō)明ZUC并不具備相關(guān)性能量分析攻擊的免疫力,同時(shí)也證實(shí)了攻擊方案快速評(píng)估方法的有效性。相比Tang Ming等采用隨機(jī)初始向量進(jìn)行差分能量攻擊,初始向量樣本數(shù)達(dá)到5000時(shí)才能觀察到明顯的差分功耗尖峰,該文的攻擊方案只需256個(gè)初始向量,且攻擊效果更為顯著。
2011, 33(7): 1639-1643.
doi: 10.3724/SP.J.1146.2010.01212
刊出日期:2011-07-19
針對(duì)粒子濾波(Particle Filter, PF)存在的粒子退化和貧化問(wèn)題,該文提出一種基于差分演化(Differential Evolution, DE)的PF算法。首先,為了充分利用最新的觀測(cè)信息,采用無(wú)跡卡爾曼濾波(Unscented Kalman Filter, UKF)來(lái)產(chǎn)生重要性分布,對(duì)重要性分布產(chǎn)生的采樣粒子不再做傳統(tǒng)重采樣操作,而是直接把采樣粒子當(dāng)作DE中的種群樣本,粒子權(quán)重作為樣本的適應(yīng)函數(shù),對(duì)粒子做差分變異、交叉、選擇等迭代優(yōu)化,最后得到最優(yōu)的粒子點(diǎn)集。試驗(yàn)結(jié)果表明,該算法有效緩解了傳統(tǒng)PF算法中的粒子退化和貧化,提高了粒子的利用率,具有較好的估計(jì)精度。
2007, 29(12): 2848-2852.
doi: 10.3724/SP.J.1146.2006.00516
刊出日期:2007-12-19
實(shí)際條件下,在對(duì)基于衰減指數(shù)(DE)和模型的雷達(dá)目標(biāo)散射中心參數(shù)估計(jì)和特征提取時(shí),其噪聲背景往往是非高斯的,分布密度函數(shù)表現(xiàn)出長(zhǎng)拖尾性質(zhì)。利用基于高斯假設(shè)條件下的估計(jì)方法進(jìn)行參數(shù)估計(jì)時(shí),往往不能得到較好的結(jié)果。針對(duì)這種情況,該文利用M估計(jì)方法來(lái)實(shí)現(xiàn)對(duì)長(zhǎng)拖尾雜波下DE模型參數(shù)的穩(wěn)健估計(jì)。首先分析了基于PRONY模型的M估計(jì)實(shí)現(xiàn)方法存在的不足,其次提出了兩種較為有效的DE模型散射中心參數(shù)M估計(jì)的實(shí)現(xiàn)方法,并對(duì)這兩種方法進(jìn)行了分析和比較。仿真實(shí)驗(yàn)結(jié)果表明,在一類長(zhǎng)拖尾K分布雜波條件下,與ESPRIT方法以及擴(kuò)展PRONY估計(jì)方法相比,該文所提的兩種方法均能得到較好的估計(jì)結(jié)果。
2008, 30(7): 1640-1643.
doi: 10.3724/SP.J.1146.2006.02002
刊出日期:2008-07-19
在準(zhǔn)循環(huán)LDPC碼的構(gòu)造中,校驗(yàn)矩陣擁有盡可能好的girth分布對(duì)于改善碼的性能有著重要的意義。該文提出了構(gòu)造準(zhǔn)循環(huán)LDPC碼的GirthOpt-DE算法,優(yōu)化設(shè)計(jì)以獲得具有好girth分布的移位參數(shù)矩陣為目標(biāo)。仿真結(jié)果表明,該文方法得到的準(zhǔn)循環(huán)LDPC碼在BER性能和最小距離上均要優(yōu)于固定生成函數(shù)的準(zhǔn)循環(huán)LDPC碼,Arrary碼和Tanner碼,并且使用上更為靈活,可以指定碼長(zhǎng),碼率及盡可能好的girth分布。
2016, 38(11): 2715-2723.
doi: 10.11999/JEIT160052
刊出日期:2016-11-19
高光譜遙感影像由于其巨大的波段數(shù)直接導(dǎo)致信息的高冗余和數(shù)據(jù)處理的復(fù)雜,這不僅帶來(lái)龐大的計(jì)算量,而且會(huì)損害分類精度。因此,在對(duì)高光譜影像進(jìn)行處理、分析之前進(jìn)行降維變得非常必要。神經(jīng)網(wǎng)絡(luò)敏感性分析可以用于對(duì)模型的簡(jiǎn)化降維,該文將該方法運(yùn)用于高光譜遙感影像降維中,通過(guò)子空間劃分弱化波段之間的相關(guān)性,利用差分進(jìn)化算法(DE)優(yōu)化神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),采用Ruck敏感性分析方法剔除掉對(duì)分類貢獻(xiàn)較小的波段,從而實(shí)現(xiàn)降維。最后,采用AVIRIS影像進(jìn)行實(shí)驗(yàn),所提算法相比其他相近的降維與分類方法能獲得更高的分類精度,達(dá)到85.83%,比其他相近方法中最優(yōu)方法高出0.31%。
- 首頁(yè)
- 上一頁(yè)
- 1
- 2
- 下一頁(yè)
- 末頁(yè)
- 共:2頁(yè)