論文元數(shù)據(jù)搜索,找到相關(guān)信息共 4 條:
2006, 28(6): 1031-1035.
刊出日期:2006-06-19
關(guān)鍵詞:
圖像處理;模式識(shí)別;廣義局部沃爾什變換;紋理特征
該文提出一組基于廣義局部沃爾什變換(GLWT)的紋理特征。首先給出局部沃爾什變換(LWT)的定義,并在空域中對(duì)其加以推廣,用以提取圖像的局部紋理信息;然后在一個(gè)宏窗口中估計(jì)12個(gè)GLWT系數(shù)的二階矩作為圖像的紋理特征。對(duì)這組紋理特征的鑒別性能進(jìn)行了分析,并與Haralick(1973),Wang Li(1990),以及Yu Hui提出的紋理特征進(jìn)行了比較。實(shí)驗(yàn)結(jié)果表明,該文提出的紋理特征具有更好的鑒別性能和分類能力。
2007, 29(1): 201-204.
doi: 10.3724/SP.J.1146.2005.00574
刊出日期:2007-01-19
通過對(duì)Xu(2004)和Zhang(2004)提出的兩種環(huán)簽名方案進(jìn)行分析,指出了這兩種環(huán)簽名方案都容易受到群成員改變攻擊(group-changing attack),并給出了攻擊方法;另外,Zhang的方案還容易受到多已知簽名存在偽造(multiple-known-signature existential forgery)攻擊。為防范這兩種攻擊,對(duì)這兩種環(huán)簽名方案進(jìn)行了改進(jìn),改進(jìn)后的方案在最強(qiáng)的安全模型(Joseph, 2004提出)中仍是安全的。
2022, 44(8): 2949-2956.
doi: 10.11999/JEIT210537
刊出日期:2022-08-17
針對(duì)目前圖像隱寫檢測(cè)模型中線性卷積層對(duì)高階特征表達(dá)能力有限,以及各通道特征圖沒有區(qū)分的問題,該文構(gòu)建了一個(gè)基于多層感知卷積和通道加權(quán)的卷積神經(jīng)網(wǎng)絡(luò)(CNN)隱寫檢測(cè)模型。該模型使用多層感知卷積(Mlpconv)代替?zhèn)鹘y(tǒng)的線性卷積,增強(qiáng)隱寫檢測(cè)模型對(duì)高階特征的表達(dá)能力;同時(shí)引入通道加權(quán)模塊,實(shí)現(xiàn)根據(jù)全局信息對(duì)每個(gè)卷積通道賦予不同的權(quán)重,增強(qiáng)有用特征并抑制無用特征,增強(qiáng)模型提取檢測(cè)特征的質(zhì)量。實(shí)驗(yàn)結(jié)果表明,該檢測(cè)模型針對(duì)不同典型隱寫算法及不同嵌入率,相比Xu-Net, Yedroudj-Net, Zhang-Net均有更高的檢測(cè)準(zhǔn)確率,與最優(yōu)的Zhu-Net相比,準(zhǔn)確率提高1.95%~6.15%。
2003, 25(4): 573-576.
刊出日期:2003-04-19
關(guān)鍵詞:
量化; 運(yùn)動(dòng)補(bǔ)償; 全零系數(shù)塊
用H.263標(biāo)準(zhǔn)對(duì)甚低碼率圖像編碼時(shí),經(jīng)過幀間預(yù)測(cè)后得到的運(yùn)動(dòng)補(bǔ)償數(shù)據(jù)通常很小,對(duì)這些數(shù)據(jù)再進(jìn)行DCT和量化后往往成為全零塊,Alice Yu算法和周算法是預(yù)先判別全零系數(shù)塊的較為有效的方法,但在對(duì)較為復(fù)雜的序列圖像進(jìn)行預(yù)測(cè)時(shí)分別出現(xiàn)了較大程度的誤判和漏判。針對(duì)這些缺點(diǎn),該文提出了一種新的全零系數(shù)塊的判別方法,它具有能隨量化級(jí)的變化自適應(yīng)地調(diào)整全零塊的判斷閾值、無需任何附加運(yùn)算和對(duì)圖像序列內(nèi)容復(fù)雜程度不敏感的優(yōu)點(diǎn),將該方法應(yīng)用于H.263編碼器中,對(duì)Miss America和News圖像序列進(jìn)行仿真實(shí)驗(yàn)。實(shí)驗(yàn)表明,大約有40%-80%的塊可以在做DCT和量化前被判別為全零系數(shù)塊,大大減少了編碼的時(shí)間,同時(shí)圖像質(zhì)量的下降控制在0.0005 dB以內(nèi)。