論文元數(shù)據(jù)搜索,找到相關(guān)信息共 14 條:
2004, 26(10): 1620-1625.
刊出日期:2004-10-19
關(guān)鍵詞:
信息隱藏; 數(shù)字水印; LU分解
該文提出了一種新的基于矩陣LU分解的數(shù)字水印算法。該方法首先將數(shù)字圖像的非負(fù)矩陣表示轉(zhuǎn)化為G-對角占優(yōu)矩陣,再進(jìn)行LU分解,通過量化函數(shù)進(jìn)行數(shù)字水印的嵌入,恢復(fù)水印時不需要原始圖像。將矩陣的LU分解數(shù)字水印算法與DCT的中頻系數(shù)比較法進(jìn)行了對比實驗。實驗結(jié)果表明這種方法運算速度快并且具有很好的魯棒性。
2013, 35(9): 2234-2239.
doi: 10.3724/SP.J.1146.2012.01527
刊出日期:2013-09-19
針對基于orth的稀疏目標(biāo)定位算法中orth預(yù)處理會影響原信號的稀疏性的問題,該文提出一種基于LU分解的稀疏目標(biāo)定位算法。該算法通過網(wǎng)格化感知區(qū)域把目標(biāo)定位問題轉(zhuǎn)化為壓縮感知問題,并利用LU分解法對觀測字典進(jìn)行分解得到新的觀測字典。該觀測字典有效地滿足了約束等距性條件,同時對觀測值的預(yù)處理過程不影響原信號的稀疏性,從而有效地保證了算法的重建性能,提升了算法的定位精度。實驗結(jié)果表明,基于LU分解的稀疏目標(biāo)定位算法的性能遠(yuǎn)優(yōu)于基于orth的稀疏目標(biāo)定位算法,目標(biāo)的定位精度得到了較大地提升。
2010, 32(8): 2019-2022.
doi: 10.3724/SP.J.1146.2009.01401
刊出日期:2010-08-19
矩陣方程的快速求解是矩量法計算電大問題的關(guān)鍵,LU分解是求解線性方程組的有效方法。該文詳細(xì)地分析了Doolittle LU分解過程,基于分解過程的特點,在MPI(Message-Passing interface) 并行環(huán)境下,提出了按直角式循環(huán)對進(jìn)程進(jìn)行任務(wù)分配的并行求解方法。實驗證明該方法可以有效地減少進(jìn)程間數(shù)據(jù)通信量,從而加快計算速度。
2003, 25(10): 1321-1326.
刊出日期:2003-10-19
貝葉斯網(wǎng)絡(luò)是一種不確定性知識的推理和描述技術(shù),針對遙感數(shù)據(jù)的復(fù)雜性和不確定性,該文提出了一種基于貝葉斯網(wǎng)絡(luò)模型的遙感數(shù)據(jù)推理和描述技術(shù)。文中利用 2002年春季中-日亞洲沙塵暴項目的土地利用數(shù)據(jù)(LU),沙塵監(jiān)測數(shù)據(jù)(TSP),衛(wèi)星 AVHRR時間序列 LST/Albedo數(shù)據(jù),采用貝葉斯網(wǎng)絡(luò)模型進(jìn)行了知識描述和信息推理預(yù)測實驗,取得了較好的效果。
2019, 41(4): 845-850.
doi: 10.11999/JEIT180562
刊出日期:2019-04-01
為實現(xiàn)電磁計算的安全可靠和自主可控,該文基于“天河二號”國產(chǎn)眾核超級計算機平臺,開展大規(guī)模并行矩量法(MoM)的開發(fā)工作。為減輕大規(guī)模并行計算時計算機集群的通信壓力以及加速矩量法積分方程求解,通過分析矩量法電場積分方程離散生成的矩陣具有對角占優(yōu)特性,提出一種新型LU分解算法,即對角塊矩陣選主元LU分解(BDPLU)算法,該算法減少了panel列分解的計算量,更重要的是,完全消除了選主元過程的MPI通信開銷。利用BDPLU算法,并行矩量法突破了6×105 CPU核并行規(guī)模,這是目前在國產(chǎn)超級計算平臺上實現(xiàn)的最大規(guī)模的并行矩量法計算,其矩陣求解并行效率可達(dá)51.95%。數(shù)值結(jié)果表明,并行矩量法可準(zhǔn)確高效地在國產(chǎn)超級計算平臺上解決大規(guī)模電磁問題。
2017, 39(5): 1261-1265.
doi: 10.11999/JEIT160651
刊出日期:2017-05-19
基于拉格朗日乘子法,該文提出一種2維修正離散傅里葉變換調(diào)制濾波器組的迭代設(shè)計方法。在每次迭代中,原型濾波器的設(shè)計描述成一個約束為2次函數(shù)的2次規(guī)劃問題。引入拉格朗日乘子法將問題轉(zhuǎn)化為無約束的優(yōu)化問題,通過求解線性矩陣方程得到優(yōu)化問題的解。針對矩陣方程中的系數(shù)矩陣的特點,運用塊LU分解,顯著降低了運算復(fù)雜度。仿真實驗表明,與現(xiàn)有的設(shè)計方法相比,該文方法設(shè)計得到的2維修正離散傅里葉變換調(diào)制濾波器組的重構(gòu)誤差和阻帶衰減均有較大的改善。
2011, 33(4): 992-996.
doi: 10.3724/SP.J.1146.2010.00756
刊出日期:2011-04-19
矩量法常與漸近波形估計技術(shù)結(jié)合用于目標(biāo)寬帶雷達(dá)散射截面的快速計算,然而當(dāng)目標(biāo)為電大尺寸時,此種方法仍然十分耗時。該文使用一種基于可變內(nèi)外迭代技術(shù)的Krylov子空間迭代法FBICGSTAB求解由電場積分方程離散得到的大型稠密矩陣方程。同時近場矩陣預(yù)處理技術(shù)將與雙閾值不完全LU分解預(yù)處理技術(shù)結(jié)合用于降低FBICGSTAB的迭代求解次數(shù)。數(shù)值計算表明:在不影響精度的前提下,該文方法可以大大提高目標(biāo)寬帶雷達(dá)散射截面的計算效率。
2021, 43(12): 3597-3604.
doi: 10.11999/JEIT200766
刊出日期:2021-12-21
為提高命名數(shù)據(jù)網(wǎng)絡(luò)(Name Data Networking, NDN)路由過程中內(nèi)容名字查找的效率,該文提出一種基于深度布隆過濾器的3級名字查找方法。該方法使用長短記憶神經(jīng)網(wǎng)絡(luò)(Long Short Term Memory, LSTM)與標(biāo)準(zhǔn)布隆過濾器相結(jié)合的方法優(yōu)化名字查找過程;采用3級結(jié)構(gòu)優(yōu)化內(nèi)容名字在內(nèi)容存儲器(Content Store, CS)、待定請求表(Pending Interest Table, PIT)中的精確查找過程,提高查找精度并降低內(nèi)存消耗。從理論上分析了3級名字查找方法的假陽性率,并通過實驗驗證了該方法能夠有效節(jié)省內(nèi)存、降低查找過程的假陽性。
2011, 33(1): 106-111.
doi: 10.3724/SP.J.1146.2010.00242
刊出日期:2011-01-19
基于簡化電磁矢量傳感器陣列,該文提出了一種新的降維四元數(shù)MUSIC估計方法。文中引用了四元數(shù)的概念,利用四元數(shù)的正交特性能夠很好地描述矢量傳感器陣元的正交結(jié)構(gòu)這一優(yōu)點,建立了電磁矢量傳感器陣列的四元數(shù)模型,利用降維Q-MUSIC (Quaternion-MUSIC)方法先對極化信號DOA進(jìn)行估計,通過已經(jīng)估計出來的DOA信息,再借助傳統(tǒng)的V-MUSIC (long-MUSIC)方法估計極化信息。從而依次獲得極化信號的4個參數(shù)。仿真實驗驗證了算法的可行性。
2014, 36(2): 353-357.
doi: 10.3724/SP.J.1146.2013.00445
刊出日期:2014-02-19
信噪比是衡量信道質(zhì)量的一個重要參數(shù),該文主要研究LTE(Long Term Evolution)系統(tǒng)中基于探測參考信號(Sounding Reference Signal, SRS)的信噪比估計方法。針對DASS(Difference of Adjacent Subcarrier Signal)算法在高信噪比下噪聲估計誤差較大的這一缺點,該文提出一種適用于SRS的改進(jìn)DASS方法。該方法通過重新定義子載波的差分方式,減小了噪聲估計的誤差,并且由于對連續(xù)的3個SRS頻點,僅需要估計一次噪聲,使得該文方法的復(fù)雜度僅為原DASS方法的1/3。仿真結(jié)果表明,所提方法的估計性能優(yōu)于其余的方法,特別是在低時延和中等時延信道下,高信噪比時的估計精度提高了約10倍。
- 首頁
- 上一頁
- 1
- 2
- 下一頁
- 末頁
- 共:2頁