論文元數(shù)據(jù)搜索,找到相關(guān)信息共 8 條:
2004, 26(10): 1620-1625.
刊出日期:2004-10-19
關(guān)鍵詞:
信息隱藏; 數(shù)字水印; LU分解
該文提出了一種新的基于矩陣LU分解的數(shù)字水印算法。該方法首先將數(shù)字圖像的非負(fù)矩陣表示轉(zhuǎn)化為G-對角占優(yōu)矩陣,再進(jìn)行LU分解,通過量化函數(shù)進(jìn)行數(shù)字水印的嵌入,恢復(fù)水印時不需要原始圖像。將矩陣的LU分解數(shù)字水印算法與DCT的中頻系數(shù)比較法進(jìn)行了對比實(shí)驗(yàn)。實(shí)驗(yàn)結(jié)果表明這種方法運(yùn)算速度快并且具有很好的魯棒性。
2013, 35(9): 2234-2239.
doi: 10.3724/SP.J.1146.2012.01527
刊出日期:2013-09-19
針對基于orth的稀疏目標(biāo)定位算法中orth預(yù)處理會影響原信號的稀疏性的問題,該文提出一種基于LU分解的稀疏目標(biāo)定位算法。該算法通過網(wǎng)格化感知區(qū)域把目標(biāo)定位問題轉(zhuǎn)化為壓縮感知問題,并利用LU分解法對觀測字典進(jìn)行分解得到新的觀測字典。該觀測字典有效地滿足了約束等距性條件,同時對觀測值的預(yù)處理過程不影響原信號的稀疏性,從而有效地保證了算法的重建性能,提升了算法的定位精度。實(shí)驗(yàn)結(jié)果表明,基于LU分解的稀疏目標(biāo)定位算法的性能遠(yuǎn)優(yōu)于基于orth的稀疏目標(biāo)定位算法,目標(biāo)的定位精度得到了較大地提升。
2010, 32(8): 2019-2022.
doi: 10.3724/SP.J.1146.2009.01401
刊出日期:2010-08-19
矩陣方程的快速求解是矩量法計算電大問題的關(guān)鍵,LU分解是求解線性方程組的有效方法。該文詳細(xì)地分析了Doolittle LU分解過程,基于分解過程的特點(diǎn),在MPI(Message-Passing interface) 并行環(huán)境下,提出了按直角式循環(huán)對進(jìn)程進(jìn)行任務(wù)分配的并行求解方法。實(shí)驗(yàn)證明該方法可以有效地減少進(jìn)程間數(shù)據(jù)通信量,從而加快計算速度。
2021, 43(8): 2121-2127.
doi: 10.11999/JEIT200769
刊出日期:2021-08-10
該文提出一種通用的時間數(shù)字轉(zhuǎn)換器(TDC)碼密度校準(zhǔn)信號產(chǎn)生方法,該方法基于相干采樣理論,通過合理設(shè)置TDC主時鐘和校準(zhǔn)信號之間的頻率差,結(jié)合輸出信號保持電路,產(chǎn)生校準(zhǔn)用的隨機(jī)信號,在碼密度校準(zhǔn)過程中,隨機(jī)信號均勻分布在TDC的延時路徑上,實(shí)現(xiàn)對TDC的bin-by-bin校準(zhǔn)?;赬ilinx公司的28 nm工藝的Kintex-7 現(xiàn)場可編程門陣列(FPGA)內(nèi)部的進(jìn)位鏈實(shí)現(xiàn)一種plain TDC,利用該方法校準(zhǔn)plain TDC的碼寬(抽頭延遲時間),研究校準(zhǔn)了2抽頭方式下的TDC的性能參數(shù),時間分辨率(對應(yīng)TDC的最低有效位,Least Significant Bit, LSB)為24.9 ps,微分非線性為(–0.84~3.1)LSB,積分非線性為(–5.0~2.2)LSB。文中所述的校準(zhǔn)方法采用時鐘邏輯資源實(shí)現(xiàn),多次測試考核結(jié)果表明,單個延時單元的標(biāo)準(zhǔn)差優(yōu)于0.5 ps。該校準(zhǔn)方法采用時鐘邏輯資源代替組合邏輯資源,重復(fù)性、穩(wěn)定性較好,實(shí)現(xiàn)了對plain TDC的高精度自動校準(zhǔn)。該方法同樣適用于其他類型的TDC的碼密度校準(zhǔn)。
2003, 25(10): 1321-1326.
刊出日期:2003-10-19
貝葉斯網(wǎng)絡(luò)是一種不確定性知識的推理和描述技術(shù),針對遙感數(shù)據(jù)的復(fù)雜性和不確定性,該文提出了一種基于貝葉斯網(wǎng)絡(luò)模型的遙感數(shù)據(jù)推理和描述技術(shù)。文中利用 2002年春季中-日亞洲沙塵暴項目的土地利用數(shù)據(jù)(LU),沙塵監(jiān)測數(shù)據(jù)(TSP),衛(wèi)星 AVHRR時間序列 LST/Albedo數(shù)據(jù),采用貝葉斯網(wǎng)絡(luò)模型進(jìn)行了知識描述和信息推理預(yù)測實(shí)驗(yàn),取得了較好的效果。
2019, 41(4): 845-850.
doi: 10.11999/JEIT180562
刊出日期:2019-04-01
為實(shí)現(xiàn)電磁計算的安全可靠和自主可控,該文基于“天河二號”國產(chǎn)眾核超級計算機(jī)平臺,開展大規(guī)模并行矩量法(MoM)的開發(fā)工作。為減輕大規(guī)模并行計算時計算機(jī)集群的通信壓力以及加速矩量法積分方程求解,通過分析矩量法電場積分方程離散生成的矩陣具有對角占優(yōu)特性,提出一種新型LU分解算法,即對角塊矩陣選主元LU分解(BDPLU)算法,該算法減少了panel列分解的計算量,更重要的是,完全消除了選主元過程的MPI通信開銷。利用BDPLU算法,并行矩量法突破了6×105 CPU核并行規(guī)模,這是目前在國產(chǎn)超級計算平臺上實(shí)現(xiàn)的最大規(guī)模的并行矩量法計算,其矩陣求解并行效率可達(dá)51.95%。數(shù)值結(jié)果表明,并行矩量法可準(zhǔn)確高效地在國產(chǎn)超級計算平臺上解決大規(guī)模電磁問題。
2017, 39(5): 1261-1265.
doi: 10.11999/JEIT160651
刊出日期:2017-05-19
基于拉格朗日乘子法,該文提出一種2維修正離散傅里葉變換調(diào)制濾波器組的迭代設(shè)計方法。在每次迭代中,原型濾波器的設(shè)計描述成一個約束為2次函數(shù)的2次規(guī)劃問題。引入拉格朗日乘子法將問題轉(zhuǎn)化為無約束的優(yōu)化問題,通過求解線性矩陣方程得到優(yōu)化問題的解。針對矩陣方程中的系數(shù)矩陣的特點(diǎn),運(yùn)用塊LU分解,顯著降低了運(yùn)算復(fù)雜度。仿真實(shí)驗(yàn)表明,與現(xiàn)有的設(shè)計方法相比,該文方法設(shè)計得到的2維修正離散傅里葉變換調(diào)制濾波器組的重構(gòu)誤差和阻帶衰減均有較大的改善。
2011, 33(4): 992-996.
doi: 10.3724/SP.J.1146.2010.00756
刊出日期:2011-04-19
矩量法常與漸近波形估計技術(shù)結(jié)合用于目標(biāo)寬帶雷達(dá)散射截面的快速計算,然而當(dāng)目標(biāo)為電大尺寸時,此種方法仍然十分耗時。該文使用一種基于可變內(nèi)外迭代技術(shù)的Krylov子空間迭代法FBICGSTAB求解由電場積分方程離散得到的大型稠密矩陣方程。同時近場矩陣預(yù)處理技術(shù)將與雙閾值不完全LU分解預(yù)處理技術(shù)結(jié)合用于降低FBICGSTAB的迭代求解次數(shù)。數(shù)值計算表明:在不影響精度的前提下,該文方法可以大大提高目標(biāo)寬帶雷達(dá)散射截面的計算效率。