區(qū)域信息驅(qū)動(dòng)的多目標(biāo)進(jìn)化半監(jiān)督模糊聚類圖像分割算法
doi: 10.12000/JRIT180605
-
1.
西安郵電大學(xué)通信與信息工程學(xué)院 ??西安 ??710121
-
2.
西安郵電大學(xué)電子信息現(xiàn)場(chǎng)勘驗(yàn)應(yīng)用技術(shù)公安部重點(diǎn)實(shí)驗(yàn)室 ??西安 ??710121
-
3.
陜西師范大學(xué)計(jì)算機(jī)科學(xué)學(xué)院 ??西安 ??710119
Multi-objective Evolutionary Semi-supervised Fuzzy Clustering Image Segmentation Motivated by Region Information
-
1.
School of Communication and Information Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China
-
2.
Key Laboratory of Electronic Information Application Technology for Scene Investigation of Ministry of Public Security, Xi’an University of Posts and Telecommunications, Xi’an 710121, China
-
3.
School of Computer Science, Shaanxi Normal University, Xi’an 710119, China
-
摘要:
現(xiàn)有的多目標(biāo)進(jìn)化聚類算法應(yīng)用于圖像分割時(shí),往往是在圖像像素層面上進(jìn)行聚類,運(yùn)行時(shí)間過長(zhǎng),而且忽略了圖像區(qū)域信息使得圖像分割效果不太理想。為了提高多目標(biāo)進(jìn)化聚類算法的分割效果和時(shí)間效率,該文將圖像區(qū)域信息與部分監(jiān)督信息引入多目標(biāo)進(jìn)化聚類,提出圖像區(qū)域信息驅(qū)動(dòng)的多目標(biāo)進(jìn)化半監(jiān)督模糊聚類圖像分割算法。該算法首先利用超像素策略獲得圖像的區(qū)域信息,然后結(jié)合部分監(jiān)督信息,設(shè)計(jì)融合區(qū)域信息和監(jiān)督信息的適應(yīng)度函數(shù),接著通過多目標(biāo)進(jìn)化策略對(duì)多個(gè)適應(yīng)度函數(shù)進(jìn)行優(yōu)化得到最優(yōu)解集。最后構(gòu)造融合區(qū)域信息與監(jiān)督信息的最優(yōu)解評(píng)價(jià)指標(biāo),實(shí)現(xiàn)從最優(yōu)解集中選取一個(gè)最優(yōu)解。實(shí)驗(yàn)結(jié)果表明:與已有多目標(biāo)進(jìn)化聚類算法相比,該算法不但分割效果有所提升,而且運(yùn)行效率得以提高。
-
關(guān)鍵詞:
- 圖像分割 /
- 多目標(biāo)進(jìn)化 /
- 模糊聚類 /
- 半監(jiān)督聚類 /
- 區(qū)域信息
Abstract:When multi-objective evolutionary clustering algorithms are applied to image segmentation, the image pixels are always utilized to be clustered. It results in a long running time. In addition, due to not considering the image region information, the image segmentation effect is not ideal. In order to improve the segmentation effect and time efficiency of the multi-objective evolutionary clustering algorithm, the image region information and some supervised information are introduced into multi-objective evolutionary clustering. Then a multi-objective evolutionary semi-supervised fuzzy clustering image segmentation algorithm driven by image region information is presented. First, the region information of the image is obtained through the super-pixel strategy. Second, two novel fitness functions are designed by introducing the supervised information and region information. Third, the multi-objective evolutionary strategy is used to optimize these two fitness functions to obtain an optimal solution set. Finally, an optimal solution evaluation index with region information and supervision information is constructed and utilized to select an optimal solution from the optimal solution set. Experimental results show the proposed algorithm outperforms comparison methods in segmentation performance and running efficiency.
-
表 1 各算法聚類準(zhǔn)確率對(duì)比
圖像 FCM SSFCM SSFC-SC MOVGA 本文算法 #3096 0.9859 0.9860 0.9865 0.5388 0.9931 #135069 0.7368 0.9926 0.9924 0.3301 0.9925 #118035 0.9342 0.9342 0.9337 0.9367 0.9523 #124084 0.7415 0.7418 0.8465 0.8678 0.9457 #86016 0.8394 0.8395 0.8568 0.6190 0.9811 #161062 0.8846 0.8847 0.8988 0.5711 0.9830 #260058 0.7893 0.7898 0.8301 0.3730 0.9904 #8068 0.9517 0.9518 0.9518 0.7112 0.9858 #113044 0.8381 0.8384 0.8395 0.2664 0.9330 #12003 0.7737 0.7735 0.8079 0.4421 0.8919 #296059 0.7397 0.7396 0.7400 0.6364 0.9284 #238011 0.8093 0.9565 0.9565 0.9566 0.9605 #101027 0.8839 0.8840 0.8850 0.5689 0.9024 #28075 0.4479 0.4456 0.5666 0.5873 0.9374 #24063 0.9675 0.9675 0.9696 0.9601 0.9737 #253036 0.6193 0.6195 0.6921 0.6443 0.9448 #42044 0.7524 0.7526 0.7572 0.7055 0.8595 #299091 0.6962 0.6964 0.7220 0.3360 0.9564 #113016 0.8164 0.8142 0.8843 0.7203 0.9426 #147091 0.9316 0.9317 0.9314 0.7781 0.9041 下載: 導(dǎo)出CSV
-
章毓晉. 圖象分割[M]. 北京: 科學(xué)出版社, 2001: 1–5.ZHANG Yujin. Image Segmentation[M]. Beijing: Science Press, 2001: 1–5. 申鉉京, 劉翔, 陳海鵬. 基于多閾值Otsu準(zhǔn)則的閾值分割快速計(jì)算[J]. 電子與信息學(xué)報(bào), 2017, 39(1): 144–149. doi: 10.11999/JEIT160248SHEN Xuanjing, LIU Xiang, and CHEN Haipeng. Fast computation of threshold based on multi-threshold Otsu criterion[J]. Journal of Electronics &Information Technology, 2017, 39(1): 144–149. doi: 10.11999/JEIT160248 ZANG Wenke, ZHANG Weining, ZHANG Wenqian, et al. A kernel-based intuitionistic fuzzy c-means clustering using a DNA genetic algorithm for magnetic resonance image segmentation[J]. Entropy, 2017, 19(11): 578. doi: 10.3390/e19110578 ZHANG Yingchun, GUO He, CHEN Feng, et al. Weighted kernel mapping model with spring simulation based watershed transformation for level set image segmentation[J]. Neurocomputing, 2017, 249: 1–18. doi: 10.1016/j.neucom.2017.01.044 BEZDEK J C, EHRLICH R, and FULL W. FCM: the fuzzy c-means clustering algorithm[J]. Computers & Geosciences, 1984, 10(2/3): 191–203. CHEN Shengguo, SUN Zhengxing, ZHOU Jie, et al. Semi-supervised image segmentation combining SSFCM and random walks[C]. Proceedings of the 2012 IEEE 2nd International Conference on Cloud Computing and Intelligence Systems, Hangzhou, China, 2012: 185–190. MENG Meng, WEI Jia, WANG Jiabing, et al. Adaptive semi-supervised dimensionality reduction based on pairwise constraints weighting and graph optimizing[J]. International Journal of Machine Learning and Cybernetics, 2017, 8(3): 793–805. doi: 10.1007/s13042-015-0380-3 JOHNSON D M, XIONG Caiming, and CORSO J J. Semi-supervised nonlinear distance metric learning via forests of max-margin cluster hierarchies[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(4): 1035–1046. doi: 10.1109/TKDE.2015.2507130 YASUNORI E, YUKIHIRO H, MAKITO Y, et al. On semi-supervised fuzzy c-means clustering[C]. Proceedings of IEEE International Conference on Fuzzy Systems, Jeju Island, South Korea, 2009: 1119–1124. YIN Xuesong, SHU Ting, and HUANG Qi. Semi-supervised fuzzy clustering with metric learning and entropy regularization[J]. Knowledge-Based Systems, 2012, 35: 304–311. doi: 10.1016/j.knosys.2012.05.016 SON L H and TUAN T M. A cooperative semi-supervised fuzzy clustering framework for dental X-ray image segmentation[J]. Expert Systems with Applications, 2016, 46: 380–393. doi: 10.1016/j.eswa.2015.11.001 SON L H and TUAN T M. Dental segmentation from X-ray images using semi-supervised fuzzy clustering with spatial constraints[J]. Engineering Applications of Artificial Intelligence, 2017, 59: 186–195. doi: 10.1016/j.engappai.2017.01.003 趙鳳, 劉漢強(qiáng), 范九倫. 基于互補(bǔ)空間信息的多目標(biāo)進(jìn)化聚類圖像分割[J]. 電子與信息學(xué)報(bào), 2015, 37(3): 672–678. doi: 10.11999/JEIT140371ZHAO Feng, LIU Hanqiang, and FAN Jiulun. Multi-objective evolutionary clustering with complementary spatial information for image segmentation[J]. Journal of Electronics &Information Technology, 2015, 37(3): 672–678. doi: 10.11999/JEIT140371 ZHAO Feng, LIU Hanqiang, FAN Jiulun, et al. Intuitionistic fuzzy set approach to multi-objective evolutionary clustering with multiple spatial information for image segmentation[J]. Neurocomputing, 2018, 312: 296–309. doi: 10.1016/j.neucom.2018.05.116 HANDL J and KNOWLES J. An evolutionary approach to multiobjective clustering[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(1): 56–76. doi: 10.1109/TEVC.2006.877146 MUKHOPADHYAY A and MAULIK U. A multiobjective approach to MR brain image segmentation[J]. Applied Soft Computing, 2011, 11(1): 872–880. doi: 10.1016/j.asoc.2010.01.007 DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182–197. doi: 10.1109/4235.996017 REN Xiaofeng and MALIK J. Learning a classification model for segmentation[C]. Proceedings of the 9th IEEE International Conference on Computer Vision, Nice, France, 2003: 10–17. ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274–2282. doi: 10.1109/TPAMI.2012.120 WANG Jianzhong, KONG Jun, LU Yinghua, et al. A modified FCM algorithm for MRI brain image segmentation using both local and non-local spatial constraints[J]. Computerized Medical Imaging and Graphics, 2008, 32(8): 685–698. doi: 10.1016/j.compmedimag.2008.08.004 湛西羊, 李良群, 張富有. 融入局部信息的直覺模糊核聚類圖像分割算法[J]. 信號(hào)處理, 2017, 33(3): 397–405. doi: 10.16798/j.issn.1003-0530.2017.03.021ZHAN Xiyang, LI Liangqun, and ZHANG Fuyou. An intuitionistic kernel-based fuzzy c-means clustering algorithm with local information for image segmentation[J]. Journal of Signal Processing, 2017, 33(3): 397–405. doi: 10.16798/j.issn.1003-0530.2017.03.021 HOLLAND J H. Genetic algorithms[J]. Scientific American, 1992, 267(1): 66–72. doi: 10.1038/scientificamerican0792-66 MAULIK U and BANDYOPADHYAY S. Performance evaluation of some clustering algorithms and validity indices[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(12): 1650–1654. doi: 10.1109/TPAMI.2002.1114856 趙鳳. 基于模糊聚類的圖像分割[M]. 西安: 西安電子科技大學(xué)出版社, 2015: 74–80.ZHAO Feng. Fuzzy Clustering for Image Segmentation[M]. Xi’an: Xidian University Press, 2015: 74–80. ARBELAEZ P, MAIRE M, FOWLKES C, et al. Contour detection and hierarchical image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 898–916. doi: 10.1109/TPAMI.2010.161 WU Mingrui and SCH?LKOPF B. A local learning approach for clustering[C]. Proceedings of the 19th International Conference on Neural Information Processing Systems, Canada, 2006: 1529–1536. -