一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于等變化自適應(yīng)源分離算法的滾動(dòng)軸承故障信號(hào)自適應(yīng)盲提取

孫瑾鈴 張偉濤 樓順天

孫瑾鈴, 張偉濤, 樓順天. 基于等變化自適應(yīng)源分離算法的滾動(dòng)軸承故障信號(hào)自適應(yīng)盲提取[J]. 電子與信息學(xué)報(bào), 2020, 42(10): 2471-2477. doi: 10.11999/JEJT190722
引用本文: 孫瑾鈴, 張偉濤, 樓順天. 基于等變化自適應(yīng)源分離算法的滾動(dòng)軸承故障信號(hào)自適應(yīng)盲提取[J]. 電子與信息學(xué)報(bào), 2020, 42(10): 2471-2477. doi: 10.11999/JEJT190722
Jinling SUN, Weitao ZHANG, Shuntian LOU. Adaptive Blind Extraction of Rolling Bearing Fault Signal Based on Equivariant Adaptive Separation via Independence[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2471-2477. doi: 10.11999/JEJT190722
Citation: Jinling SUN, Weitao ZHANG, Shuntian LOU. Adaptive Blind Extraction of Rolling Bearing Fault Signal Based on Equivariant Adaptive Separation via Independence[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2471-2477. doi: 10.11999/JEJT190722

基于等變化自適應(yīng)源分離算法的滾動(dòng)軸承故障信號(hào)自適應(yīng)盲提取

doi: 10.11999/JEJT190722
基金項(xiàng)目: 國家自然科學(xué)基金(61571339),陜西省創(chuàng)新人才推進(jìn)計(jì)劃-青年科技新星項(xiàng)目(2018KJXX-019)
詳細(xì)信息
    作者簡介:

    孫瑾鈴:女,1995年生,博士生,研究方向?yàn)槊ば盘?hào)處理

    張偉濤:男,1983年生,副教授,碩士生導(dǎo)師,研究方向?yàn)槊ば盘?hào)處理

    樓順天:男,1962年生,教授,博士生導(dǎo)師,研究方向?yàn)樯窠?jīng)網(wǎng)絡(luò)信息處理與應(yīng)用、模糊信息處理與應(yīng)用、盲信號(hào)處理、現(xiàn)代信號(hào)智能處理、智能控制技術(shù)

    通訊作者:

    張偉濤 zhwt-work@foxmail.com

  • 中圖分類號(hào): TN911.7

Adaptive Blind Extraction of Rolling Bearing Fault Signal Based on Equivariant Adaptive Separation via Independence

Funds: The National Natural Science Foundation of China (61571339), The Innovative Talents Promotion Program of Shaanxi Province (2018KJXX-019)
  • 摘要: 針對(duì)復(fù)雜工況下滾動(dòng)軸承故障信號(hào)盲提取問題,該文提出一種獨(dú)立分量分析(ICA)中非線性函數(shù)自適應(yīng)選擇方法,解決了等變化自適應(yīng)源分離算法(EASI)在多類振動(dòng)源共存的情況下無法分離軸承故障信號(hào)的問題。此外,為了解決在線盲分離算法穩(wěn)態(tài)誤差與收斂速率的平衡問題,提出基于模糊邏輯的自適應(yīng)迭代步長選擇方法,極大地提高了學(xué)習(xí)算法的收斂速度,且穩(wěn)態(tài)誤差更小。軸承故障數(shù)據(jù)的盲提取仿真結(jié)果驗(yàn)證了算法的性能。
  • 圖  1  模糊系統(tǒng)的輸入與輸出

    圖  2  源信號(hào)波形及其幅值分布

    圖  3  觀測信號(hào)及分離信號(hào)包絡(luò)譜

    圖  4  算法的性能比較

    表  1  模糊推理規(guī)則

    $\mu {{ = S1} }$$\mu {{ = S2} }$$\mu {{ = M} }$$\mu {{ = B} }$
    ${D_i}{{ = S1} }$${{S1} }$${{S1} }$${{S2} }$${{M2} }$
    ${D_i}{{ = S2} }$${{S1} }$${{S2} }$${{M1} }$${{M2} }$
    ${D_i}{{ = M} }$${{M1} }$${{M1} }$${{M2} }$${{B1} }$
    ${D_i}{{ = B} }$${{M2} }$${{M2} }$${{B1} }$${{B2} }$
    下載: 導(dǎo)出CSV

    表  2  算法的成功率比較

    算法名稱成功率(%)
    EASI, $g(x) = {x^3}$0
    EASI, $g(x) = \tanh (x)$12
    本文算法,使用固定步長88
    本文算法,使用模糊邏輯步長97
    下載: 導(dǎo)出CSV

    表  3  算法的性能比較

    算法ISR
    SOBI0.069
    FastICA, $g( \cdot ) = \tanh ( \cdot )$0.140
    FastICA, $g( \cdot ) = {( \cdot )^3}$0.170
    FastICA, $g( \cdot ) = ( \cdot )\exp ( - {( \cdot )^2}/2)$0.160
    本文算法,使用模糊邏輯步長0.110
    下載: 導(dǎo)出CSV
  • 郝如江, 盧文秀, 褚福磊. 聲發(fā)射檢測技術(shù)用于滾動(dòng)軸承故障診斷的研究綜述[J]. 振動(dòng)與沖擊, 2008, 27(3): 75–79. doi: 10.3969/j.issn.1000-3835.2008.03.019

    HAO Rujiang, LU Wenxiu, and CHU Fulei. Review of diagnosis of rolling element bearings defaults by means of acoustic emission technique[J]. Journal of Vibration and Shock, 2008, 27(3): 75–79. doi: 10.3969/j.issn.1000-3835.2008.03.019
    HYV?RINEN A, KARHUNEN J, and OJA E. Independent Component Analysis[M]. New York: Wiley, 2001: 9–11. doi: 10.1007/978-0-387-73003-5_305.
    李揚(yáng), 張偉濤, 樓順天. 基于聯(lián)合對(duì)角化的聲信號(hào)深度卷積混合盲分離方法[J]. 電子與信息學(xué)報(bào), 2019, 41(12): 2951–2956. doi: 10.11999/JEIT190067

    LI Yang, ZHANG Weitao, and LOU Shuntian. Deep convolution blind separation of acoustic signals based on joint diagonalization[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2951–2956. doi: 10.11999/JEIT190067
    陳雷, 韓大偉, 郭艷菊, 等. 基于回溯搜索優(yōu)化的卷積混合語音盲分離[J]. 計(jì)算機(jī)工程與應(yīng)用, 2017, 53(15): 137–143.

    CHEN Lei, HAN Dawei, GUO Yanju, et al. Speech convolutive blind separation algorithm based on backtracking search optimization[J]. Computer Engineering and Applications, 2017, 53(15): 137–143.
    龔曉峰, 毛蕾, 林秋華, 等. 基于四階累積量張量聯(lián)合對(duì)角化的多數(shù)據(jù)集聯(lián)合盲源分離[J]. 電子與信息學(xué)報(bào), 2019, 41(3): 509–515. doi: 10.11999/JEIT180414

    GONG Xiaofeng, MAO Lei, LIN Qiuhua, et al. Joint blind source separation based on joint diagonalization of fourth-order cumulant tensors[J]. Journal of Electronics &Information Technology, 2019, 41(3): 509–515. doi: 10.11999/JEIT180414
    劉嘉輝, 董辛?xí)F, 李劍飛. 基于全矢譜時(shí)間固有尺度分解和獨(dú)立分量分析盲源分離降噪的滾動(dòng)軸承故障特征提取[J]. 中國機(jī)械工程, 2018, 29(8): 943–948. doi: 10.3969/j.issn.1004-132X.2018.08.009

    LIU Jiahui, DONG Xinmin, and LI Jianfei. Fault feature extraction of rolling bearings based on noises reduced by full vector spectrum ITD-ICA blind source separation[J]. China Mechanical Engineering, 2018, 29(8): 943–948. doi: 10.3969/j.issn.1004-132X.2018.08.009
    HE Jun, CHEN Yong, ZHANG Qinghua, et al. Blind source separation method for bearing vibration signals[J]. IEEE Access, 2018, 6: 658–664. doi: 10.1109/ACCESS.2017.2773665
    HUANG Xiangdong, JIN Xukang, and FU Haipeng. Short-sampled blind source separation of rotating machinery signals based on spectrum correction[J]. Shock and Vibration, 2016, 2016: 9564938. doi: 10.1155/2016/9564938
    胡純直. 風(fēng)機(jī)齒輪箱多故障診斷問題研究[D]. [碩士論文], 浙江大學(xué), 2017.

    HU Chunzhi. The research on multi-fault diagnosis of wind turbine gearbox[D]. [Master dissertation], Zhejiang University, 2017.
    陳恩利, 張璽, 申永軍, 等. 基于SVD降噪和盲信號(hào)分離的滾動(dòng)軸承故障診斷[J]. 振動(dòng)與沖擊, 2012, 31(23): 185–190. doi: 10.3969/j.issn.1000-3835.2012.23.034

    CHEN Enli, ZHANG Xi, SHEN Yongjun, et al. Fault diagnosis of rolling bearings based on SVD denoising and blind signals separation[J]. Journal of Vibration and Shock, 2012, 31(23): 185–190. doi: 10.3969/j.issn.1000-3835.2012.23.034
    許同樂, 王營博, 鄭店坤, 等. 基于LMD-ICA降噪的滾動(dòng)軸承故障特征提取方法研究[J]. 北京郵電大學(xué)學(xué)報(bào), 2017, 40(1): 111–116.

    XU Tongle, WANG Yingbo, ZHENG Diankun, et al. Research of the rolling bearing fault signal feature extraction Method based on the LMD-ICA noise reduction[J]. Journal of Beijing University of Posts and Telecommunications, 2017, 40(1): 111–116.
    席劍輝, 崔健馳, 蔣麗英. 基于JADE-ICA的滾動(dòng)軸承多故障信號(hào)盲源分離[J]. 振動(dòng)與沖擊, 2017, 36(5): 231–237. doi: 10.13465/j.cnki.jvs.2017.05.037

    XI Jianhui, CUI Jianchi, and JIANG Liying. JADE-ICA-based blind source separation of multi-fault signals of rolling bearings[J]. Journal of Vibration and Shock, 2017, 36(5): 231–237. doi: 10.13465/j.cnki.jvs.2017.05.037
    BELL A J and SEJNOWSKI T J. An information-maximization approach to blind separation and blind deconvolution[J]. Neural Computation, 1995, 7(6): 1129–1159. doi: 10.1162/neco.1995.7.6.1129
    CARDOSO J F and LAHELD B H. Equivariant adaptive source separation[J]. IEEE Transactions on Signal Processing, 1996, 44(12): 3017–3030. doi: 10.1109/78.553476
    ZHANG Weitao, LOU Shuntian, and FENG Dazheng. Adaptive quasi-newton algorithm for source extraction via CCA approach[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(4): 677–689. doi: 10.1109/TNNLS.2013.2280285
    KARHUNEN J, PAJUNEN P, and OJA E. The nonlinear PCA criterion in blind source separation: Relations with other approaches[J]. Neurocomputing, 1998, 22(1/3): 5–20. doi: 10.1016/s0925-2312(98)00046-0
  • 加載中
圖(4) / 表(3)
計(jì)量
  • 文章訪問數(shù):  2306
  • HTML全文瀏覽量:  448
  • PDF下載量:  51
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-09-17
  • 修回日期:  2020-04-29
  • 網(wǎng)絡(luò)出版日期:  2020-05-13
  • 刊出日期:  2020-10-13

目錄

    /

    返回文章
    返回