基于等變化自適應(yīng)源分離算法的滾動(dòng)軸承故障信號(hào)自適應(yīng)盲提取
doi: 10.11999/JEJT190722
-
西安電子科技大學(xué)電子工程學(xué)院 西安 710071
Adaptive Blind Extraction of Rolling Bearing Fault Signal Based on Equivariant Adaptive Separation via Independence
-
School of Electronic Engineering, Xidian University, Xi’an 710071, China
-
摘要: 針對(duì)復(fù)雜工況下滾動(dòng)軸承故障信號(hào)盲提取問題,該文提出一種獨(dú)立分量分析(ICA)中非線性函數(shù)自適應(yīng)選擇方法,解決了等變化自適應(yīng)源分離算法(EASI)在多類振動(dòng)源共存的情況下無法分離軸承故障信號(hào)的問題。此外,為了解決在線盲分離算法穩(wěn)態(tài)誤差與收斂速率的平衡問題,提出基于模糊邏輯的自適應(yīng)迭代步長選擇方法,極大地提高了學(xué)習(xí)算法的收斂速度,且穩(wěn)態(tài)誤差更小。軸承故障數(shù)據(jù)的盲提取仿真結(jié)果驗(yàn)證了算法的性能。
-
關(guān)鍵詞:
- 盲信號(hào)分離 /
- 故障檢測 /
- 超高斯 /
- 亞高斯 /
- 模糊邏輯
Abstract: For the problem of blind extraction of rolling bearing fault signals under complex working conditions, an adaptive selection method of non-linear functions in Independent Component Analysis (ICA) is proposed, which solves the problem that Equivariant Adaptive Separation via Independence(EASI) can not separate bearing fault signals when multiple vibration sources coexist. In addition, in order to balance the steady-state error and convergence rate of the online blind separation algorithm, an adaptive iterative step selection method based on fuzzy logic is proposed, which improves greatly the convergence speed of the learning algorithm and reduces the steady-state error. The simulation results of blind extraction of bearing fault data verify the performance of the proposed algorithm.-
Key words:
- Blind signal separation /
- Fault detection /
- Super-Gaussian /
- Sub-Gaussian /
- Fuzzy logic
-
表 1 模糊推理規(guī)則
$\mu {{ = S1} }$ $\mu {{ = S2} }$ $\mu {{ = M} }$ $\mu {{ = B} }$ ${D_i}{{ = S1} }$ ${{S1} }$ ${{S1} }$ ${{S2} }$ ${{M2} }$ ${D_i}{{ = S2} }$ ${{S1} }$ ${{S2} }$ ${{M1} }$ ${{M2} }$ ${D_i}{{ = M} }$ ${{M1} }$ ${{M1} }$ ${{M2} }$ ${{B1} }$ ${D_i}{{ = B} }$ ${{M2} }$ ${{M2} }$ ${{B1} }$ ${{B2} }$ 下載: 導(dǎo)出CSV
表 2 算法的成功率比較
算法名稱 成功率(%) EASI, $g(x) = {x^3}$ 0 EASI, $g(x) = \tanh (x)$ 12 本文算法,使用固定步長 88 本文算法,使用模糊邏輯步長 97 下載: 導(dǎo)出CSV
表 3 算法的性能比較
算法 ISR SOBI 0.069 FastICA, $g( \cdot ) = \tanh ( \cdot )$ 0.140 FastICA, $g( \cdot ) = {( \cdot )^3}$ 0.170 FastICA, $g( \cdot ) = ( \cdot )\exp ( - {( \cdot )^2}/2)$ 0.160 本文算法,使用模糊邏輯步長 0.110 下載: 導(dǎo)出CSV
-
郝如江, 盧文秀, 褚福磊. 聲發(fā)射檢測技術(shù)用于滾動(dòng)軸承故障診斷的研究綜述[J]. 振動(dòng)與沖擊, 2008, 27(3): 75–79. doi: 10.3969/j.issn.1000-3835.2008.03.019HAO Rujiang, LU Wenxiu, and CHU Fulei. Review of diagnosis of rolling element bearings defaults by means of acoustic emission technique[J]. Journal of Vibration and Shock, 2008, 27(3): 75–79. doi: 10.3969/j.issn.1000-3835.2008.03.019 HYV?RINEN A, KARHUNEN J, and OJA E. Independent Component Analysis[M]. New York: Wiley, 2001: 9–11. doi: 10.1007/978-0-387-73003-5_305. 李揚(yáng), 張偉濤, 樓順天. 基于聯(lián)合對(duì)角化的聲信號(hào)深度卷積混合盲分離方法[J]. 電子與信息學(xué)報(bào), 2019, 41(12): 2951–2956. doi: 10.11999/JEIT190067LI Yang, ZHANG Weitao, and LOU Shuntian. Deep convolution blind separation of acoustic signals based on joint diagonalization[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2951–2956. doi: 10.11999/JEIT190067 陳雷, 韓大偉, 郭艷菊, 等. 基于回溯搜索優(yōu)化的卷積混合語音盲分離[J]. 計(jì)算機(jī)工程與應(yīng)用, 2017, 53(15): 137–143.CHEN Lei, HAN Dawei, GUO Yanju, et al. Speech convolutive blind separation algorithm based on backtracking search optimization[J]. Computer Engineering and Applications, 2017, 53(15): 137–143. 龔曉峰, 毛蕾, 林秋華, 等. 基于四階累積量張量聯(lián)合對(duì)角化的多數(shù)據(jù)集聯(lián)合盲源分離[J]. 電子與信息學(xué)報(bào), 2019, 41(3): 509–515. doi: 10.11999/JEIT180414GONG Xiaofeng, MAO Lei, LIN Qiuhua, et al. Joint blind source separation based on joint diagonalization of fourth-order cumulant tensors[J]. Journal of Electronics &Information Technology, 2019, 41(3): 509–515. doi: 10.11999/JEIT180414 劉嘉輝, 董辛?xí)F, 李劍飛. 基于全矢譜時(shí)間固有尺度分解和獨(dú)立分量分析盲源分離降噪的滾動(dòng)軸承故障特征提取[J]. 中國機(jī)械工程, 2018, 29(8): 943–948. doi: 10.3969/j.issn.1004-132X.2018.08.009LIU Jiahui, DONG Xinmin, and LI Jianfei. Fault feature extraction of rolling bearings based on noises reduced by full vector spectrum ITD-ICA blind source separation[J]. China Mechanical Engineering, 2018, 29(8): 943–948. doi: 10.3969/j.issn.1004-132X.2018.08.009 HE Jun, CHEN Yong, ZHANG Qinghua, et al. Blind source separation method for bearing vibration signals[J]. IEEE Access, 2018, 6: 658–664. doi: 10.1109/ACCESS.2017.2773665 HUANG Xiangdong, JIN Xukang, and FU Haipeng. Short-sampled blind source separation of rotating machinery signals based on spectrum correction[J]. Shock and Vibration, 2016, 2016: 9564938. doi: 10.1155/2016/9564938 胡純直. 風(fēng)機(jī)齒輪箱多故障診斷問題研究[D]. [碩士論文], 浙江大學(xué), 2017.HU Chunzhi. The research on multi-fault diagnosis of wind turbine gearbox[D]. [Master dissertation], Zhejiang University, 2017. 陳恩利, 張璽, 申永軍, 等. 基于SVD降噪和盲信號(hào)分離的滾動(dòng)軸承故障診斷[J]. 振動(dòng)與沖擊, 2012, 31(23): 185–190. doi: 10.3969/j.issn.1000-3835.2012.23.034CHEN Enli, ZHANG Xi, SHEN Yongjun, et al. Fault diagnosis of rolling bearings based on SVD denoising and blind signals separation[J]. Journal of Vibration and Shock, 2012, 31(23): 185–190. doi: 10.3969/j.issn.1000-3835.2012.23.034 許同樂, 王營博, 鄭店坤, 等. 基于LMD-ICA降噪的滾動(dòng)軸承故障特征提取方法研究[J]. 北京郵電大學(xué)學(xué)報(bào), 2017, 40(1): 111–116.XU Tongle, WANG Yingbo, ZHENG Diankun, et al. Research of the rolling bearing fault signal feature extraction Method based on the LMD-ICA noise reduction[J]. Journal of Beijing University of Posts and Telecommunications, 2017, 40(1): 111–116. 席劍輝, 崔健馳, 蔣麗英. 基于JADE-ICA的滾動(dòng)軸承多故障信號(hào)盲源分離[J]. 振動(dòng)與沖擊, 2017, 36(5): 231–237. doi: 10.13465/j.cnki.jvs.2017.05.037XI Jianhui, CUI Jianchi, and JIANG Liying. JADE-ICA-based blind source separation of multi-fault signals of rolling bearings[J]. Journal of Vibration and Shock, 2017, 36(5): 231–237. doi: 10.13465/j.cnki.jvs.2017.05.037 BELL A J and SEJNOWSKI T J. An information-maximization approach to blind separation and blind deconvolution[J]. Neural Computation, 1995, 7(6): 1129–1159. doi: 10.1162/neco.1995.7.6.1129 CARDOSO J F and LAHELD B H. Equivariant adaptive source separation[J]. IEEE Transactions on Signal Processing, 1996, 44(12): 3017–3030. doi: 10.1109/78.553476 ZHANG Weitao, LOU Shuntian, and FENG Dazheng. Adaptive quasi-newton algorithm for source extraction via CCA approach[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(4): 677–689. doi: 10.1109/TNNLS.2013.2280285 KARHUNEN J, PAJUNEN P, and OJA E. The nonlinear PCA criterion in blind source separation: Relations with other approaches[J]. Neurocomputing, 1998, 22(1/3): 5–20. doi: 10.1016/s0925-2312(98)00046-0 -